1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
2 years ago
5

Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?

Physics
1 answer:
alexandr402 [8]2 years ago
7 0

Answer:

work done= force × displacement

=800×5

=4000J

Explanation:

The amount of work done is the result of the magnitude of force applied and the displacement of the body due to the force applied. Therefore, work done is defined as the product of the applied force and the displacement of the body.

You might be interested in
Two identical satellites orbit the earth in stable orbits. one satellite orbits with a speed v at a distance r from the center o
wariber [46]
The available options are: (found the complete text on internet)
A- at a distance less than r
B- at a distance equal to r
C- at a distance greater than r

Solution:
The correct answer is C) at a distance greater than r.

In fact, the gravitational attraction between the satellite and the Earth provides the centripetal force that keeps the satellite in circular orbit, so we can write
G \frac{Mm}{r^2}=m \frac{v^2}{r}
where the term on the left is the gravitational force, while the term on the right is the centripetal force, and where
G is the gravitational constant
M is the Earth mass
m is the satellite mass
r is the distance of the satellite from the Earth's center
v is the satellite speed

Re-arranging the equation, we get
r= \frac{GM}{v^2}
and we see from this formula that, if the second satellite has a speed less than the speed v of the first satellite, it means that the denominator of the fraction is smaller, and so r is larger for the second satellite.
7 0
2 years ago
This equation is known as the ideal gas law, and it can be used to predict the behavior of many gases at relatively low pressure
Masja [62]
The correct answer is 
<span>C) either the pressure of the gas, the volume of the gas, or both, will increase.

In fact, the ideal gas law can be written as
</span>pV=nRT
<span>where 
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas

We can see that if the temperature T increases, then the term on the right in the equation increases, therefore the term on the left should increase as well. In order for this to be possible, at least one between p and V should increase, or also both of them. Therefore, the correct answer is C.</span>
6 0
3 years ago
baseball is hit into the air at an initial speed of 37.2 m/s and an angle of 49.3 ° above the horizontal. At the same time, the
Agata [3.3K]

Answer:

The average speed of the fielder is 5.24 m/s

Explanation:

The position vector of the ball after it was hit can be calculated using the following equation:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t.

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

α = launching angle.

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

Please, see the attached figure for a graphical description of the problem.

When the ball is caught, its position vector will be (see r1 in the figure):

r1 = (r1x, 0.873 m)

Then, using the equation of the position vector written above:

r1x = x0 + v0 · t · cos α

0.873 m = y0 + v0 · t · sin α + 1/2 · g · t²

Since the frame of reference is located at the point where the ball was hit, x0 and y0 = 0. Then:

r1x = v0 · t · cos α

0.873 m = v0 · t · sin α + 1/2 · g · t²

Let´s use the equation of the y-component of r1 to obtain the time of flight of the ball:

0.873 m = 37.2 m/s · t · sin 49.3° - 1/2 · 9.8 m/s² · t²

0 = -0.873 m + 37.2 m/s · t · sin 49.3° - 4.9 m/s² · t²

Solving the quadratic equation:

t = 0.03 s and t = 5.72 s.

It would be impossible to catch the ball immediately after it is hit at t = 0.03 s. Besides, the problem says that the ball was caught on its way down. Then, the time of flight of the ball is 5.72 s.

With this time, we can calculate r1x which is the horizontal distance traveled by the ball from home:

r1x = v0 · t · cos α

r1x = 37.2 m/s · 5.72 s · cos 49.3°

r1x = 1.39 × 10² m

The distance traveled by the fielder is (1.39 × 10² m - 1.09 × 10² m) 30.0 m.

The average velocity is calculated as the traveled distance over time, then:

average velocity = treveled distance / elapsed time

average velocity = 30.0 m / 5.72 s = 5.24 m/s

8 0
3 years ago
Amy throws a softball through the air. What are the different forces acting on the ball while it’s in the air? The softball expe
sasho [114]
<h2>The different forces acting on the ball while its in air</h2>

Amy throws a softball through the air. Applied, drag and gravitational forces are acting on the ball while it’s in the air. The softball experiences force as a result of Amy’s throw. As the ball moves, it experiences from the air it passes through.

It also experiences a downward pull because earth has the property to attract everything which is on the earth towards it. The ball is moving in the air but earth applies force on the ball to get back on the ground. Hence, in this way, gravitational force applies.

There is also a drag force which results due to friction that is present in the air. It resist to move ball in the air and there will also be applied force which is given by a person who throws by applying force.    

7 0
3 years ago
Read 2 more answers
Two forces of 50 N and 30N respectively, are acting on an object. Find the net force (in N) on the object if
xxTIMURxx [149]

A) the forces are acting in the same direction.. B) Together, forces are acting in opposite directions

Answer:

A) 80 N

B) 20 N

Explanation:

A) If the forces acting are in the same direction, then the net force will be a sum of both so many faces..

Thus;

ΣF = 50 + 30

ΣF = 80 N

B) If the forces are acting in the in opposite directions with the larger force pointing in the positive y-axis then, the net force is;

ΣF = 50 - 30

ΣF = 20 N

8 0
3 years ago
Other questions:
  • A small hot-air balloon is filled with 1.02×106 l of air (d = 1.20 g/l). as the air in the balloon is heated, it expands to 1.09
    13·2 answers
  • What are the odds of nonsmokers developing cardiovascular disease when compared to smokers?
    15·2 answers
  • What two processes cycle water from the land to the atmosphere
    10·1 answer
  • Three of your friends are all sitting g on one end of a seesaw. The combined weight is 275 N. The length from the fulcrum to you
    12·1 answer
  • Where do asteroids come from? a. There are the remains of a planet between Mars and Jupiter that broke up. b. They are escaped s
    14·1 answer
  • The weight on the moon is....<br>that of earth.​
    8·1 answer
  • What are used for manufacturing paper along with chemical
    12·1 answer
  • When the friction increases too much does the object stay still or moving opposite direction ​
    11·1 answer
  • calculate the pressure exerted on the floor when a elephant who weighs 6000N stands on 1 foot which has a area of 20m
    15·1 answer
  • Physics acceleration
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!