Simplify:
5(a + 5) + -3 = 3(2 + -1a)
Reorder the terms:
5(5 + a) + -3 = 3(2 + -1a)
(5 * 5 + a * 5) + -3 = 3(2 + -1a)
(25 + 5a) + -3 = 3(2 + -1a)
Reorder the terms again:
25 + -3 + 5a = 3(2 + -1a)
Combine like terms: 
]25 + -3 = 22
22 + 5a = 3(2 + -1a)
22 + 5a = (2 * 3 + -1a * 3)
22 + 5a = (6 + -3a)
Solve:
22 + 5a = 6 + -3a
To solve for variable 'a':
You have to move all terms containing A to the left, all other terms to the right.
Then add '3a' to each side of the equation:
22 + 5a + 3a = 6 + -3a + 3a
Combine like terms: 
5a + 3a = 8a
22 + 8a = 6 + -3a + 3a
Combine like terms again: 
-3a + 3a = 0
22 + 8a = 6 + 0
22 + 8a = 6
Add '-22' to each side of the equation.:
22 + -22 + 8a = 6 + -22
Combine like terms: 
22 + -22 = 0
0 + 8a = 6 + -22
8a = 6 + -22
Combine like terms once more:
 6 + -22 = -16
8a = -16
Divide each side by '8'.
a = -2
Simplify:
a = -2
Answer: a=-2
Hope I could help! :)
 
        
                    
             
        
        
        
Answer:
The shorter piece   x  =  8.4 in
The longer one    y  =  15.6 in
Step-by-step explanation:
If we cut  a string length  L  in to unequal  pieces we get two pieces
first one with length  x  and the other one with length  y
Let call  x  the smaller piece,  then   y = L  -  x will be the longer one
If   x  =  35 %    then
x  =  0,35* L     and 
y = L -  x  =  L - 0,35*L      ⇒  y  =  0,65 L     ⇒ y  =  0.65*24
Now if L  =  24  in
x  =  0,35*24          ⇒               x = 8.4 in
and 
L  -  x  =  0.65*L      ⇒       L - x  =  0.65*24     y  =  L  -  x  =  15.6 in
as way of verification you can add the length of the two pieces and find:
8.4  +  15.6  = 24 in
 
        
             
        
        
        
Answer:
option A
Step-by-step explanation:
f(x)+g(x) will lead to addition of the fractions
LCM of 2x and x² is 2x²
{(2x²×½x)+(2x²×4/x²)}/2x²
x+8/2x²
 
        
             
        
        
        
4600 
Because the zeros aren’t significant unless they’re after a decimal point, but other numbers are significant.