1s2,2s2.2p6,3s2,3p6,3d4,4s2
B is the correct answer if I remember
Answer:
true
Explanation:
from Newton's second law of motion ,we can understand that acceleration of a body is directly proportional to the force applied on it and inversely proportional to its mass ,so as the force applied increase,the acceleration also increases
Answer:
Azide synthesis is the first method on the table of synthesis of primary amines. The Lewis structure of the azide ion, N3−, is as shown below.
an azide ion
An “imide” is a compound in which an N−−H group is attached to two carbonyl groups; that is,
imide linkage
You should note the commonly used trivial names of the following compounds.
phthalic acid, phthalic anhydride, and phthalimide
The phthalimide alkylation mentioned in the reading is also known as the Gabriel synthesis.
If necessary, review the reduction of nitriles (Section 20.7) and the reduction of amides (Section 21.7).
Before you read the section on reductive amination you may wish to remind yourself of the structure of an imine (see Section 19.8).
The Hofmann rearrangement is usually called the Hofmann degradation. In a true rearrangement reaction, no atoms are lost or gained; however, in this particular reaction one atom of carbon and one atom of oxygen are lost from the amide starting material, thus the term “rearrangement” is not really appropriate. There is a rearrangement step in the overall degradation process, however: this is the step in which the alkyl group of the acyl nitrene migrates from carbon to nitrogen to produce an isocyanate.
Explanation:
Answer:
2p
Explanation:
To solve this question, we can use Boyle's Law, which states that:
"For a fixed mass of an ideal gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume"
Mathematically:

where
p is the pressure of the gas
V is its volume
The equation can be rewritten as

where in this problem we have:
is the initial pressure of the Xe(g) gas
is the initial volume of the Xe(g) gas
is the final volume of the Xe(g) gas
Solving for p2, we find the final pressure of the gas:

So, the final pressure is twice the initial pressure.