Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
Answer:
The law of conservation of mass states that matter can not be created or destroyed in a chemical reaction.
Explanation:
1. The reactivity among the alkali metals increases as you go down the group due to the decrease in the effective nuclear charge from the increased shielding by the greater number of electrons. The greater the atomic number, the weaker the hold on the valence electron the nucleus has, and the more easily the element can lose the electron. Conversely, the lower the atomic number, the greater pull the nucleus has on the valence electron, and the less readily would the element be able to lose the electron (relatively speaking). Thus, in the first set comprising group I elements, sodium (Na) would be the least likely to lose its valence electron (and, for that matter, its core electrons).
2. The elements in this set are the group II alkaline earth metals, and they follow the same trend as the alkali metals. Of the elements here, beryllium (Be) would have the highest effective nuclear charge, and so it would be the least likely to lose its valence electrons. In fact, beryllium has a tendency not to lose (or gain) electrons, i.e., ionize, at all; it is unique among its congeners in that it tends to form covalent bonds.
3. While the alkali and alkaline earth metals would lose electrons to attain a noble gas configuration, the group VIIA halogens, as we have here, would need to gain a valence electron for an full octet. The trends in the group I and II elements are turned on their head for the halogens: The smaller the atomic number, the less shielding, and so the greater the pull by the nucleus to gain a valence electron. And as the atomic number increases (such as when you go down the group), the more shielding there is, the weaker the effective nuclear charge, and the lesser the tendency to gain a valence electron. Bromine (Br) has the largest atomic number among the halogens in this set, so an electron would feel the smallest pull from a bromine atom; bromine would thus be the least likely here to gain a valence electron.
4. The pattern for the elements in this set (the group VI chalcogens) generally follows that of the halogens. The greater the atomic number, the weaker the pull of the nucleus, and so the lesser the tendency to gain electrons. Tellurium (Te) has the highest atomic number among the elements in the set, and so it would be the least likely to gain electrons.
The explanation of the how the various concentrations of acid will affect the amount of limestone has been given below.
Effects of acid rain on limestone:-
- When an acid combines with a carbonate, it produces carbon dioxide as a gas and forms a salt that is soluble in the carbonate and acid's water.
- There are several gases in the atmosphere that can dissolve in precipitation such as rain and snow.
- Some may produce acids in rain water, such as carbonic acid, sulfuric acid, and nitric acid.
- Because the concentration is modest, the rain is not highly acidic, but it is acidic enough to react with the carbonates that make up limestone.
Thus we discussed the affects of acid rain on limestones above.
Learn more about Acid Rain here:
brainly.com/question/718250
#SPJ10
As we move down the group, the metallic bond becomes more stable and the formation of forming covalent bond decreases down the group due to the large size of elements.
Covalent and metallic bonding leads to higher melting points. Due to a decrease in attractive forces from carbon to lead there is a drop in melting point.
Carbon forms large covalent molecules than silicon and hence has a higher melting point than silicon.
Similarly, Ge also forms a large number of covalent bonds and has a smaller size as compared to that of Sn. Hence melting point decreases from Ge to Sn.
The order will be C>Si>Ge>Pb>Sn.
To learn more about the covalent bond, visit: brainly.com/question/10777799
#SPJ4