Answer:
molecular weight of H2O2 or grams. This compound is also known as Hydrogen Peroxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O2, or 34.01468 grams.
1 grams H2O2 is equal to 0.029399071224542 mole.
1 grams H2O2 to mol = 0.0294 mol
10 grams H2O2 to mol = 0.29399 mol
20 grams H2O2 to mol = 0.58798 mol
30 grams H2O2 to mol = 0.88197 mol
40 grams H2O2 to mol = 1.17596 mol
50 grams H2O2 to mol = 1.46995 mol
100 grams H2O2 to mol = 2.93991 mol
200 grams H2O2 to mol = 5.87981 mol
Answer:
- <em>To balance a chemical equation it may be necessary to adjust the </em><u>coefficients.</u>
Explanation:
The <em>coefficients</em> of a <em>chemical equation</em> are the numbers that you put in front of each reactant and product. They are used to balance the equation and comply with the law of mass conservation.
By adjusting the coefficients you obtain the relative amounts (moles) of each product and reactant, i.e. the mole ratios.
Here an example.
The first information is what is called a word equation. E.g. nitrogen and hydrogen react to form ammonia:
- Word equation: hydrogen + nitrogen → ammonia
- Skeleton equation: H₂ + N₂ → NH₃
This equation shows the chemical formulae but it is not balanced. The law of mass conservation is not observed.
So, in order to comply with the law of mass conservation you adjust the coefficients as follow.
- Balanced chemical equation: 3H₂ + N₂ → 2NH₃
As you see, it was necessary to modify the coefficients. Now the law of conservation of mass is observed and you get the mole ratios:
- 3 mol H₂ : 1 mol N₂ : 2 mol NH₃
The lithosphere, hydrosphere, and atmosphere are the abiotic parts of the planet.