Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer:
11.3 g
Explanation:
7.895 + 3.4 = 11.295
When rounded to correct number of significant figures --> 11.3
There are 3 significant figures in 11.3
Answer:
See Explanation
Explanation:
moles of NH₃ = 11.9g/17.03 g/mol = 0.699 mole
moles of CN₂OH₄ = 1/2(0.699) mole =0.349 mole
Theoretical yield of CN₂OH₄ = (0.349 mole)(60 g/mole) = 20.963 grams
%Yield = Actual Yield/Theoretical Yield x 100%
= 18.5g/20.963g x 100% = 88.25%
Yes they are what are your options