<h3>
Answer:</h3>
128 g HCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Reaction Mole Ratios
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg (s) + HCl (aq) → MgCl (aq) + H₂ (g)
↓
[RxN - Balanced] 2Mg (s) + 2HCl (aq) → 2MgCl (aq) + H₂ (g)
[Given] 3.25 mol Mg
[Solve] x g HCl
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg → 2 mol HCl
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of Cl - 35.45 g/mol
Molar Mass of HCl - 1.01 + 35.45 = 36.46 g/mol
<u>Step 3: Stoich</u>
- [S - DA] Set up:

- [S - DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
127.61 g HCl ≈ 128 g HCl
Answer:
It's <em>True</em> very true darling
Answer:
It is newtons First Law:)
Explanation:
Answer:
No.
Explanation:
You the atomic number indicates element. The atomic number is derived from the amount of protons, not neutrons. So you could have 198 neutrons and not know that its gold because it is the isotope gold 198.
Answer:
pH of Buffer Solution 5.69
Explanation:
Mole of anhydrous sodium acetate = 
= 
= 0.18 mole
100 ml of 0.2 molar acetic acid means
= M x V
= 0.2 x 100
= 20 mmol
= 0.02 mole
Using Henderson equation to find pH of Buffer solution
pH = pKa + log![\frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
= 4.74 + log
= 4.74 + log 9
= 5.69
So pH of the Buffer solution = 5.69