Answer: Avogrado's Constant
Explanation:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles.
Answer:
C. Gain in electron(s) resulting in a decrease of oxidation number.
Explanation:
Redox reactions are reactions involving transfer of of electron between two species (reduction specie) and (oxidation species) and change resulting in change in oxidation number.
Reduction in terms of redox reaction is the specie that accepts electron(s) and gets "reduced" since its oxidation state has been reduced.
For example
Cl + e- → Cl⁻
The above reaction is an example of reduction reaction taking place in a redox reaction. We can see that Chlorine oxidation state was changed from (0) to (-1) state.
It would be weathering because of all the heat and pressure.
Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:

Therefore, from the chemical equation, we have that:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) = \left[\Delta H^\circ_f \text{ N$_2$H$_4$} + \Delta H^\circ_f \text{ H$_2$O} \right] -\left[3 \Delta H^\circ_f \text{ H$_2$}+\Delta H^\circ_f \text{ N$_2$O}\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%3D%20%5Cleft%5B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24O%7D%20%20%5Cright%5D%20%20%20-%5Cleft%5B3%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24%7D%2B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24O%7D%5Cright%5D%20%5Cend%7Baligned%7D)
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) & = \left[ \Delta H^\circ _f \text{ N$_2$H$_4$} + (-285.8\text{ kJ/mol})\right] -\left[ 3(0) + (82.1\text{ kJ/mol})\right] \\ \\ \Delta H^\circ _f \text{ N$_2$H$_4$} & = (-317 + 285.8 + 82.1)\text{ kJ/mol} \\ \\ & = 50.9\text{ kJ/mol} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%26%20%3D%20%5Cleft%5B%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%28-285.8%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20-%5Cleft%5B%203%280%29%20%2B%20%2882.1%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20%5C%5C%20%5C%5C%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%26%20%3D%20%28-317%20%2B%20285.8%20%2B%2082.1%29%5Ctext%7B%20kJ%2Fmol%7D%20%5C%5C%20%5C%5C%20%26%20%3D%2050.9%5Ctext%7B%20kJ%2Fmol%7D%20%5Cend%7Baligned%7D)
In conclusion, our answer is A.
The answer will be
.
.
.
4.88 x 1023 molecules of O2