Complete Question
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg. Assume, a bit unrealistically, that the athlete's arm is uniform.
What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Include the torque due to the steel ball, as well as the torque due to the arm's weight.
Answer:
The torque is 
Explanation:
From the question we are told that
The mass of the steel ball is 
The length of arm is 
The mass of the arm is 
Given that the arm of the athlete is uniform them the distance from the shoulder to the center of gravity of the arm is mathematically represented as

=>
=>
Generally the magnitude of torque about the athlete shoulder is mathematically represented as

=> 
=> 
Answer:
3/10 F.
Explanation:
Height ( h ) = 1m
Time taken ( t ) = 0.1 second
Height² ( h² ) = 9m
Time taken² ( t² ) = 1 second
Solution,
F = ma
= m ( v - u ) / t
= m √2gh / t
now,
F/F² = √h/h² × t/t²
F¹ = 3/10 F.
answer !!
Answer:
100.390407
Explanation:
To find acceleration, you would use the formula a=f/m (acceleration equals force divided by mass) and then once you enter those numbers in the formula, a=180/1.793. Then you divide 180 divided by 1.793 which gets you an answer of 100.390407.
Both vectors should be declared to have the same number of elements.
vector<int> personName(50); vector<int> personAge(50)
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. Although a vector has magnitude and direction, it does not have position like a point.
Learn more about Vectors here:
brainly.com/question/13322477
#SPJ4
Gravity, friction, and air resistance are some examples.