Answer:
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Applying the impulse-momentum equation;
Impulse = change in momentum
Ft = m∆v
F = (m∆v)/t
Where;
F = force
t = time
m = mass
∆v = v2 - v1 = change in velocity
Given;
m = 0.80 kg
t = 0.050 s
The ball strikes the wall horizontally with a speed of 25 m/s, and it bounces back with this same speed.
v2 = 25 m/s
v1 = -25 m/s
∆v = v2 - v1 = 25 - (-25) m/s = 25 +25 = 50 m/s
Substituting the values;
F = (m∆v)/t
F = (0.80×50)/0.05
F = 800N
the magnitude of the average force exerted on the wall by the ball is 800N
Answer:
Because you hit the break?
Answer:
Explanation:
liquids have definite volume
liquids do not have definite shape. The take the shape of the container in which they are kept.
gases do not have definite volume.
gases do not have definite shape. They take the shape of the container in which they are kept.
Hope this helps
plz mark as barinliest!!!!!!
Stay safe!
Answer:
i think u times them im not sure but then divide
Explanation:
Answer:
0.64 m
Explanation:
The first thing is calculate the center of mass of the system.

now multiplying every coordinate x by the mass of each object (romeo, juliet and the boat) and dividing all by the total mass taking by reference the position of juliet.

X_cm = 1.4589 m
When the forces involved are internals, the center of mass don't change
After the movement the center of mass remains in the same distance from the shore, but change relative to the rear of the boat.

X_cm= 2.10 m
this displacement is how the boat move toward the shore.
2.10-1.46= 0.64 m