The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm
Answer:
As much I know the gravity on moon is 1.62m/s२.
Answer:
"What is the best advice a parent can give a child?"
Explanation:
The other answers have one clear response. Ex: Orange popsicles melt faster than grape popsicles. That would be a fact.
But parental advice can vary, depending on your opinion. I may say that all parents must teach their children not to talk to strangers, while someone else may say that parents should advice their kids to treat everyone fairly. Nothing can be proven as the only appropriate response.
Hope this helps!
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.
Answer:
is reflected back into the region of higher index
Explanation:
Total internal reflection is a phenomenon that occurs when all the light passing from a region of higher index of refraction to a region of lower index is reflected back into the region of higher index.
According to Snell's law, refraction of ligth is described by the equation

where
n1 is the refractive index of the first medium
n2 is the refractive index of the second medium
is the angle of incidence (in the first medium)
is the angle of refraction (in the second medium)
Let's now consider a situation in which

so light is moving from a medium with higher index to a medium with lower index. We can re-write the equation as

Where
is a number greater than 1. This means that above a certain value of the angle of incidence
, the term on the right can become greater than 1. So this would mean

But this is not possible (the sine cannot be larger than 1), so no refraction occurs in this case, and all the light is reflected back into the initial medium (total internal reflection). The value of the angle of incidence above which this phenomen occurs is called critical angle, and it is given by
