1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
13

PLEASE SOMEONE ANSWER!!! thank you so so so much!!!!

Physics
1 answer:
Oduvanchick [21]3 years ago
7 0

Answer:

As much I know the gravity on moon is 1.62m/s२.

You might be interested in
Which description accurately describes the tide represented by the image below?
igomit [66]
<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
8 0
3 years ago
Read 2 more answers
How do I remember the Mohs hardness scale?
yanalaym [24]
It's a hardness scale from 1-10 determining how easy or hard it is to scratch the mineral.

Remember that talc (like chalk or baby powder) is the softest and easiest to scratch then diamond being 10 is the hardest mineral to scratch or break or cut

6 0
3 years ago
It was once recorded that a Jaguar
Artyom0805 [142]

Answer:

71.85 m/s

Explanation:

Given the following :

Length of skid marks left by jaguar (s) = 290 m

Skidding Acceleration (a) = - 8.90m/s²

Final velocity of jaguar (v) = 0

Speed of Jaguar before it Began to skid =?

Hence, initial speed of jaguar could be obtained using the formula :

v² = u² + 2as

Where

v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar

0² = u² + (2 × (-8.90) × 290)

0 = u² + (-5,162)

u² = 5162

Take the square root of both sides

u = √5162

u = 71.847 m/s

u = 71.85m/s

6 0
3 years ago
A ball is shot from the ground into the air. At a height of 8.8 m, the velocity is observed to be
Mariulka [41]

Answer:

h = 10.4 m

R = 22.48 m

v= 16,2 m/s , α = 61.7°, below the horizontal

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

Explanation:

The ball describes a parabolic path, and the equations of the movement are:

Equation of the uniform rectilinear motion (horizontal ) :

x = vx*t  :

Equations of the uniformly accelerated rectilinear motion of upward   (vertical ).

y = (v₀y)*t - (1/2)*g*t² Equation (2)

vfy² = v₀y² -2gy Equation (3)

vfy = v₀y -gt Equation (4)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m  

y: vertical position in meters (m)  

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Known data

y= 8.8 m

v = ( (7.7)i + (5.7)j  ) m/s : vx= 7.7 m/s , vy= 5.7 m/s

g = 9.8 m/s²

Calculation of the  initial  vertical velocity ( v₀y)

We apply Equation (3) with the known data

(vfy)² = (v₀y)² -2*g*y

(5.7)² = (v₀y)²- (2)*(9.8)*(8.8)

(5.7)²+ 172.48 =  (v₀y)²

v_{oy} = \sqrt{(5.7)^{2}+ 172.48 }

v₀y = 14.3 m/s

Calculation of the maximum height  the ball rise (h)

In the maximum height vfy=0

We apply the Equation (3) :

(vfy)² = (v₀y)² -2*g*y

0 = (14.3)² - 2*98*h

h = (14.3)² / 19.6

h = 10.4 m

Calculation of the time it takes for the ball to the maximum height

We apply the Equation (4) :

vfy = v₀y -gt

0 = v₀y -gt

gt = v₀y

t = v₀y/g

t = 14.3/9.8

t= 1.46 s

Flight time = 2t = 2.92 s

Total horizontal distance traveled by the ball  (R)

We replace data in the equation (1)

x =vx*t    vx= 7.7 m/s , t =2.92 s  (Flight time)

R = (7.7)* (2.92) = 22.48 m

Velocity of the ball (magnitude (v) and direction (α)) the instant before it hits the ground

vx = 7.7 m/s

vy = v₀y -gt = 14.3 - 9.8* (2.92) = -14.3 m/s

v= \sqrt{v_{x}^{2}+v_{y}^{2}  }

v= \sqrt{(7.7)^{2}+ (-14.3)^{2}  }

v= 16,2 m/s

\alpha = tan^{-1} (\frac{v_{y} }{v_{x} })

\alpha = tan^{-1} (\frac{-14.3 }{7.7 })

α = -61.7°

α = 61.7°, below the horizontal

i- j components of the v

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

5 0
3 years ago
I have a voltage source of 12V but a light that only burns at 5V. The lamp works on 18 mA. Calculate the resistance that you EXT
ratelena [41]

Answer:

The resistance that will provide this potential drop is 388.89 ohms.

Explanation:

Given;

Voltage source, E = 12 V

Voltage rating of the lamp, V = 5 V

Current through the lamp, I = 18 mA

Extra voltage or potential drop, IR =  E- V  

                                                    IR = 12 V - 5 V = 7 V

The resistance that will provide this potential drop (7 V) is calculated as follows:

IR = V

R = \frac{V}{I} = \frac{7 \ V}{18 \times 10^{-3} A} \ = 388.89 \ ohms

Therefore, the resistance that will provide this potential drop is 388.89 ohms.

7 0
3 years ago
Other questions:
  • Investigators are researching the appearance of a strange movement of objects in what the local community considers a haunted ho
    11·1 answer
  • What’s 3 times 10 to the 8th power divided by 2.45 times 10 to the 9th power
    10·1 answer
  • Accuracy in scientific investigation is important because
    6·1 answer
  • Which of the following can significantly change a vehicle’s center of gravity?
    10·2 answers
  • Arm abcd is pinned at b and undergoes reciprocating motion such that θ=(0.3 sin 4t) rad, where t is measured in seconds and the
    15·1 answer
  • Several large firecrackers are inserted into the holes of a bowling ball, and the 6.3 kg ball is then launched into the air with
    5·1 answer
  • 10. Juan wants to see how air expands when it is heated. He is able to use any of the following supplies - a balloon, a heat lam
    6·2 answers
  • When a wire is attached to the negative terminal of a battery, what happens?
    15·2 answers
  • Two spheres of equal mass, A and B, are projected off the edge of a 1.0 m bench.    Sphere A has a horizontal velocity of 10 m/s
    14·1 answer
  • two masses 3 kg and 5 kg are connected by a string. a force of 20 n is applied to the 3 kg mass. what is the tension on the stri
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!