Answer:
6.44 × 10^10 N/C
Explanation:
Electric field due to the ring on its axis is given by
E = K q r / (r^2 + x^2)^3/2
Where r be the radius of ring and x be the distance of point from the centre of ring and q be the charge on ring.
r = 0.25 m, x = 0.5 m, q = 5 C
K = 9 × 10^9 Nm^2/C^2
E = 9 × 10^9 × 5 × 0.25 / (0.0625 + 0.25)^3/2
E = 6.44 × 10^10 N/C
The level of greenhouse gases in our atmosphere would decrease, due to less automobiles.
Answer:
When an object moves in a straight line with a constant acceleration, you can calculate its acceleration if you know how much its velocity changes and how long this takes.
The formula is,
Acceleration = change in velocity / time taken
The equation for acceleration can also be represented as:
a = (v-u) \ t
The change in velocity v – u = 5 – 0 = 5 m/s.
The acceleration = change in velocity ÷ time = 5 m/s ÷ 2 s = 2.5 m/s^2
Answer:
The work done by this engine is 800 cal
Explanation:
Given:
100 g of water
120°C final temperature
22°C initial temperature
30°C is the temperature of condensed steam
Cw = specific heat of water = 1 cal/g °C
Cg = specific heat of steam = 0.48 cal/g °C
Lw = latent heat of vaporization = 540 cal/g
Question: How much work can be done using this engine, W = ?
First, you need to calculate the heat that it is necessary to change water to steam:

Here, mw is the mass of water

Now, you need to calculate the heat released by the steam:

The work done by this engine is the difference between both heats:

It is possible for on object to be going at 100 miles per hour, but still have a velocity. This is because the object going at 100 miles per hour has speed, which is a scalar quantity, which is defined by only magnitude, but the velocity of the object can be 0, since velocity is a vector quantity which is defined by both magnitude and direction.
Since this object only has magnitude and no direction (which is not given), then the velocity can be 0