1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
9

To understand the meaning and possible applications of the work-energy theorem. In this problem, you will use your prior knowled

ge to derive one of the most important relationships in mechanics: the work-energy theorem. We will start with a special case: a particle of mass m moving in the x direction at constant acceleration a. During a certain interval of time, the particle accelerates from vi to vf, undergoing displacement s given by s=xf−xi.
A. Find the acceleration a of the particle.
B. Evaluate the integral W = integarvf,vi mudu.
Physics
1 answer:
sladkih [1.3K]3 years ago
8 0

Answer:

a) the acceleration of the particle is (  v_f² - v_i² ) / 2as

b) the integral W = \frac{1}{2}m( _f² - v_i² )

Explanation:

Given the data in the question;

force on particle F = ma

displacement s = x_f - x_i

work done on the particle W = Fs = mas

we know that; change in energy = work done       { work energy theorem }

\frac{1}{2}m(  v_f² - v_i² ) = mas

\frac{1}{2}(  v_f² - v_i² ) = as

(  v_f² - v_i² ) = 2as

a = (  v_f² - v_i² ) / 2as

Therefore, the acceleration of the particle is (  v_f² - v_i² ) / 2as

b) Evaluate the integral W = \int\limits^{v_{f} }_{v_{i} } mvdv

W = \int\limits^{v_{f} }_{v_{i} } mvdv

W =m[\frac{v^{2} }{2} ]^{vf}_{vi}

W = \frac{1}{2}m( _f² - v_i² )

Therefore, the integral W = \frac{1}{2}m( _f² - v_i² )

You might be interested in
Dave rows a boat across a river at 4.0 m/s. the river flows at 6.0 m/s and is 360 m across.
Ad libitum [116K]

a) Let's call x the direction parallel to the river and y the direction perpendicular to the river.

Dave's velocity of 4.0 m/s corresponds to the velocity along y (across the river), while 6.0 m/s corresponds to the velocity of the boat along x. Therefore, the drection of Dave's boat is given by:

\theta= arctan(\frac{v_y}{v_x})=arctan(\frac{4.0 m/s}{6.0 m/s})=arctan(0.67)=33.7^{\circ}

relative to the direction of the river.


b) The distance Dave has to travel it S=360 m, along the y direction. Since the velocity along y is constant (4.0 m/s), this is a uniform motion, so the time taken to cross the river is given by

t=\frac{S_y}{v_y}=\frac{360 m}{4.0 m/s}=90 s


c) The boat takes 90 s in total to cross the river. The displacement along the y-direction, during this time, is 360 m. The displacement along the x-direction is

S_x = v_x t =(6.0 m/s)(90 s)=540 m

so, Dave's landing point is 540 m downstream.


d) If there were no current, Dave would still take 90 seconds to cross the river, because its velocity on the y-axis (4.0 m/s) does not change, so the problem would be solved exactly as done at point b).

7 0
4 years ago
Which tool would you use to measure the amount of rainfall?
zheka24 [161]

Answer:

a

Explanation:

5 0
3 years ago
Read 2 more answers
A uniform rod of mass 2.30 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicula
melomori [17]

Answer:

Explanation:

Moment of inertia of the rod = 1/12 m L²

m is mass of the rod and L is its length

= 1/2 x 2.3 x 2 x 2

= 4.6 kg m²

Moment of inertia of masses attached with the rod

= m₁ d² + m₂ d²

m₁ and m₂ are masses attached , and d is their distance from the axis of rotation

= 5.3 x 1² + 3.5 x 1²

= 8.8 kg m²

Total moment of inertia = 13.4 kg m²

B )

Rotational kinetic energy = 1/2 I ω²

I is total moment of inertia and ω is angular velocity

= .5 x 13.4 x 2²

= 26.8 J .

C )

when mass of rod is negligible , moment of inertia will be due to masses only

Total moment of inertia of masses

= 8.8 kg m²

D )

kinetic energy of the system

= .5 x 8.8 x 2²

= 17.6 J .

3 0
4 years ago
Mathphys please notice me
eimsori [14]

Answer:

24.2 s

29.2 m

Explanation:

First, convert each speed from km/h to m/s.

91.5 km/h = 25.42 m/s

77.5 km/h = 21.53 m/s

The speed of the cheetah relative to the gazelle is:

v = 25.42 m/s − 21.53 m/s

v = 3.89 m/s

So the time it takes for the cheetah to catch the gazelle is:

x = v t

94.2 m = (3.89 m/s) t

t = 24.2 s

If instead we want to find x so that t = 7.5 s, then:

x = v t

x = (3.89 m/s) (7.5 s)

x = 29.2 m

7 0
4 years ago
Read 2 more answers
Folded layers of rock can form a wavelike pattern of troughs and crests. The layers near the crest (i.e. the upward fold) form A
Dennis_Churaev [7]

Answer:

C) An anticline

Explanation:

An anticline is an arch-like and convex kind of fold that forms near the crest.

6 0
3 years ago
Other questions:
  • Assuming the passive sign convention and an operating frequency of 314 rad/s, calculate the phasor voltage V which appears acros
    14·1 answer
  • Radon is a radioactive gas found below ground. If a sample of radon occupies 29 mL at 25 oC, what volume will it occupy at 500 K
    10·1 answer
  • An element had 82 protons, 83 neutrons, and 82 electrons. What is the symbol of the element
    14·1 answer
  • An object is hanging by a string from the ceiling of an elevator. The elevator is moving upward with a constant speed. What is t
    12·1 answer
  • The speed of a bus increases uniformly from 15meter per seconds to 60 meter per seconds in 20second.Calculate, the acceleration.
    14·1 answer
  • Red, blue, and green are called a __ __ __ __ __ __ __ primary colors because when they are added together, they form all of the
    6·2 answers
  • Einstein’s theory of general relativity describes how space and time are connected. What makes this idea a theory?
    9·2 answers
  • Sub this channel pls... frreee points too.. ☺​
    9·2 answers
  • An object is 3.0 cm from a concave mirror, with a focal length of 1.5 cm. Calculate the image distance. Remember to include your
    12·1 answer
  • 1.Two materials that can be scratched by an iron mail are ___, ___
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!