<h2>Answer: Francium
</h2>
Let's start by explaining that electronegativity is a term coined by Linus Pauling and is determined by the <em>ability of an atom of a certain element to attract electrons when chemically combined with another atom.
</em>
So, the more electronegative an element is, the more electrons it will attract.
It should be noted that this value can not be measured directly by experiments, but it can be determined indirectly by means of calculations from other atomic or molecular properties of the element. That is why the scale created by Pauling is an arbitrary scale, where the maximum value of electronegativity is 4, assigned to Fluorine (F) and the <u>lowest is 0.7, assigned to Francium (Fr).</u>
Because the specimen is very small with a light microscope
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
Answer:

Explanation:
let the ladder is of mass "m" and standing at an angle with the ground
So here by horizontal force balance we will have

by vertical force balance we have

now by torque balance about contact point on ground we will have

so we will have

now from first equation we have


For the first one, the correct answer would be "<span>Substance changes its form but not its molecular composition.". During a physical change (let's say cutting paper), the substance has its shape changed, but it is still itself (paper).
</span><span>The second one is a bit trickier: </span>
Kinetic energy of a molecule is directly influenced by temperature. If there is a higher temperature it will have a higher kinetic energy which means the molecule moves at a higher velocity. This will increase the chance of particles bouncing off of each other during the chemical reaction. That explains why the rate of reaction will be higher at a higher temperature, rather than higher at a cool temperature. The correct answer would be lower at 39F.