Answer:
The number of atoms are
.
Explanation:
Given that,
Diameter 

Distance = 2.60 cm
We calculate the number of atoms
Using formula of numbers of atoms


Hence, The number of atoms are
.
Http://www.calculator.net/pace-calculator.html?ctype=distance&ctime=05%3A00%3A00&cdistance=5&cdistanceunit=Miles&cpace=02%3A00%3A00&cpaceunit=tpm&printit=0&x=87&y=24 a pace calculator
Let us say that:
1 = 1st player notation
2 = 2nd player notation (the opponent)
a. First let us establish the distance travelled by the 2nd
player:
d2 = 13 m/s * (t + 1.5)
d2 = 13 t + 19.5
Then the distance of the 1st player:
d1 = v0 t + 0.5 a t^2 (v0
initial velocity = 0 since he started from rest)
d1 = 0.5 * 4 m/s^2 * t^2
d1 = 2 t^2
The two distances must be equal, d1 = d2:
2 t^2 = 13 t + 19.5
t^2 – 6.5 t = 9.75
Completing the square:
(t – 3.25)^2 = 9.75 + (- 3.25)^2
t – 3.25 = ±4.5
t = -1.25, 7.75
Since time cannot be negative, therefore:
t = 7.75 seconds
So he catches his opponent after 7.75 seconds.
b. Using the equation:
d1 = 2 t^2
d1 = 2 * (7.75)^2
d1 = 120.125 m
So he travelled about 120.125 meters when he catches up
to his opponent.
Answer:
The height of the hill is, h = 38.42 m
Explanation:
Given,
The horizontal velocity of the soccer ball, Vx = 15 m/s
The range of the soccer ball, s = 42 m
The projectile projected from a height is given by the formula
S = Vx [Vy + √(Vy² + 2gh)] / g
Therefore,
h = S²g/2Vx² (Since Vy = 0)
Substituting the values
h = 42² x 9.8/ (2 x 15²)
= 38.42 m
Hence, the height of the hill is, h = 38.42 m
To solve these problems first draw the free body diagram: