Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
The answer is to the ground.
Gravity refers to the force that holds together the universe. On Earth, the gravity attempts to change the velocity of all the objects on the Earth's surface toward the ground at a rate of 9.8 meters per second squared according to Galileo.
<span><span>Imagine we have a 2 lb ball of putty moving with a speed of 5 mph striking and sticking to a 18 lb bowling ball at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v1. To find v1, use momentum conservation: 2x5=(18+2)v1, v1=0.5 mph. </span><span>Next, imagine we have a 18 lb bowling ball moving with a speed of 5 mph striking and sticking to a 2 lb ball of putty at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v2. To find v2, use momentum conservation: 18x5=(18+2)v2, v2=4.5 mph. </span><span>
</span><span>
</span><span>now figure out your problem its really easy let me know if you need more help </span></span>
Answer:
3.2N
Explanation:
Given parameters:
Mass of block = 1.5kg
Coefficient of kinetic friction = 0.6
Force of pull on block = 12N
Unknown:
Net force on the block = ?
Solution:
Frictional force is a force that opposes motion:
Net force = Force of pull - Frictional force
Frictional force = umg
u is coefficient of kinetic friction
m is the mass
g is the acceleration due to gravity
Frictional force = 0.6 x 1.5 x 9.8 = 8.8N
Net force = 12N - 8.8N = 3.2N