<h2>
Answer: a.The mirrors and eyepiece of a large telescope are spring-loaded to allow them to return quickly to a known position. </h2>
Explanation:
Adaptive optics is a method used in several astronomical observatories to counteract in real time the effects of the Earth's atmosphere on the formation of astronomical images.
This is done through the insertion into the optical path of the telescope of sophisticated deformable mirrors supported by a set of computationally controlled actuators. Thus obtaining clear images despite the effects of atmospheric turbulence that cause the unwanted distortion.
It should be noted that with this technique it is also necessary to have a moderately bright reference star that is very close to the object to be observed and studied. However, it is not always possible to find such stars, so a powerful laser beam is used to point towards the Earth's upper atmosphere and create artificial stars.
The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.