1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
6

Which of the following is a homogeneous mixture of two or more pure substances?

Chemistry
2 answers:
hammer [34]3 years ago
4 0

Answer:

Option b, Tea

Explanation:

Tea is a homogeneous mixture of tea extract, milk, sugar and water. Tea extract, milk and sugar are water soluble and hence, make a homogeneous mixture.

Homogeneous mixture is a mixture of two or more components having same proportions of components through out the sample.

Mercury is an element not a mixture.

Water is a compound. Compound is formed by two or more element chemically bonded to each other. It is a pure substance not a mixture.

Similarly, alcohol is also a compound not a mixture,

So, among the given options, tea is a homogeneous mixture.

lukranit [14]3 years ago
3 0
Mercury is a homogenous mixture of two or more pure substances
You might be interested in
Why does water dissolve sugar ? Explain your answer !
Marina CMI [18]
The sugar is a solvent. It's particles will break it down in the water
7 0
3 years ago
Refer to attachment please this is one of my study questions and im stuck
Reil [10]
Percentage yield= actual yield/theoretical yield x100
So you would have to do-
15/22 x 100. Hope this helps!!
3 0
2 years ago
Given the Henry’s law constant for O2(4.34*109Pa) at 25° C, calculate the molar concentration of oxygen in air-saturated and O2s
Flauer [41]

This is an incomplete question, here is a complete question.

The Henry's law constant for oxygen dissolved in water is 4.34 × 10⁹ g/L.Pa at 25⁰C.If the partial pressure of oxygen in air is 0.2 atm, under atmospheric conditions, calculate the molar concentration of oxygen in air-saturated and oxygen saturated water.

Answer : The molar concentration of oxygen is, 2.67\times 10^2mol/L

Explanation :

As we know that,

C_{O_2}=k_H\times p_{O_2}

where,

C_{O_2} = molar solubility of O_2 = ?

p_{O_2} = partial pressure of O_2 = 0.2 atm  = 1.97×10⁻⁶ Pa

k_H = Henry's law constant  = 4.34 × 10⁹ g/L.Pa

Now put all the given values in the above formula, we get:

C_{O_2}=(4.34\times 10^9g/L.Pa)\times (1.97\times 10^{-6}Pa)

C_{O_2}=8.55\times 10^3g/L

Now we have to molar concentration of oxygen.

Molar concentration of oxygen = \frac{8.55\times 10^3g/L}{32g/mol}=2.67\times 10^2mol/L

Therefore, the molar concentration of oxygen is, 2.67\times 10^2mol/L

8 0
3 years ago
Calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron spec
Bess [88]

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0

Let energy change be E for 1 atom.

E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol

E'=1,312.17 kJ/mol

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,B^{4+} atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-340eV)=340 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 340eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol

E'=32,804.31 kJ/mol

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,Li^{2+}atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol

E'=11,809.55 kJ/mol

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,Mn^{24+}atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol

E'=820,107.88 kJ/mol

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

4 0
3 years ago
PLEASE HELP ME STRAIGHT AWAY
san4es73 [151]
Desert plants commonly have small wax coated leaves to prevent moisture and water from evaporating. It is an important feature in desert plants to adapt to the arid climate. The wax on the leaves also protect the leaves from the chilling temperature of the desert at night. 
4 0
2 years ago
Other questions:
  • To form a stable ion will magnesium gain or lose electrons how many electrons
    15·1 answer
  • What is a chemical reaction
    10·2 answers
  • The enthalpy change for the reaction of titanium metal with gaseous iodine is given by the following thermochemical equation: 2
    10·1 answer
  • How is each of the lizards adapted to its environment?
    13·1 answer
  • When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coeffici
    14·1 answer
  • What may happen to the human body when exposed to an infectious agent?
    8·1 answer
  • How many molecules of O2 are there in 2.0 moles of oxygen?
    8·1 answer
  • What happens when there is an element and there is another element what is that called?
    13·1 answer
  • an object displaces 32 mL of water and a known density of 0.0625 g/mL. What is the mass of the object?
    8·2 answers
  • Describe what happens on the molecular level when acetic acid dissolves in water.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!