Answer:
Reliability. When a scientist repeats an experiment with a different group of people or a different batch of the same chemicals and gets very similar results then those results are said to be reliable. Reliability is measured by a percentage – if you get exactly the same results every time then they are 100% reliable.
Explanation:
Sorry, I only got one way.
Answer: option A.
A physical change occurred in which the iron remained iron, but lost one of its physical properties
Explanation: magnetization and demagnetization is a physical change as no new substance is form and it is easily reversed. When an iron rod is magnetized, it can loss it magnetic property by hitting it. So when an iron rod which is magnetized falls from a height it can also loss its magnetic property
<span>1.18 x 3 = 3.55 </span>
find ratio of F to F in each compound
. according to law of multiple proportions that the masses of one element which combine with a fixed mass of the second element are in a ratio of whole numbers.
now F is "one element" and S has "fixed mass",
the ratio of F6 to Fx = 3:1
<span>thats why x= 2
there is less F in SFx
the ratio is 3:1.
dividing 6 by 3 and you get 2</span>
Answer:
No net change in reaction occurs in this nucleophilic acyl subtitution reaction
Explanation:
Sodium ethoxide in ethanol gives nucleophilic acyl substitution reaction with ethyl-2-methylpropanoate.
Here ethoxide group replaces an ethoxide group from ester through addition-ellimination pathway.
So, ultimately, the product of this reaction is identical with reactant i.e. ethyl-2-methylpropanoate is reproduced.
Hence one might observe no change during reaction as product and reactant of this reaction are same.
Mechanistic pathway has been shown below.
Answer:
To prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
Explanation:
Molarity of a solute in a solution denotes number of moles of solute dissolved in 1 L of solution.
So, moles of urea in 1.00 L of a 2.0 M urea solution = 2 moles
We know, number of moles of a compound is the ratio of mass to molar mass of that compound.
So, mass of 2 moles of urea = 
Therefore to prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
So, option (C) is correct.