Answer:
D. Crystallization
Explanation:
Let's clarify the irrelevant terms first.
- unification: This term has nothing to do with chemistry at all
- lithification: When the problem mentions magma and lava, you might think that this term is related to the process here. However, 'lithification' <em>do </em>have a precise meaning in geology. It refers to the process where sediments collapses into one single rock under pressure, which has nothing to do with the process mentioned here.
Now, for 2 terms that might confuse you: 'solidification' and 'crystallization' these also has precise scientific definition
Solidification is defined the process where substances in <em>liquid</em> phase changes its phase to <em>solid</em>. On first glance, this answer might seems correct, and yes, it is correct for this question. But not the <em>most</em> correct.
The keyword here is
'the internal components will arrange its self in an organized pattern.'
Crystallization is a special case of Solidification where the atoms or molecules of liquid solidify by spontaneously arrange themselves in periodic, ordered, and organized pattern. It might or might not happen during solidification depending on cooling rate, viscosity of liquid, and other factors.
So, Crystallization is the most correct answer here.
Answer:
χH₂ = 0.4946
χN₂ = 0.4130
χAr = 0.0923
Explanation:
The total pressure of the mixture (P) is:
P = pH₂ + pN₂ + pAr
P = 443.0 Torr + 369.9 Torr + 82.7 Torr
P = 895.6 Torr
We can find the mole fraction of each gas (χ) using the following expression.
χi = pi / P
χH₂ = pH₂ / P = 443.0 Torr/895.6 Torr = 0.4946
χN₂ = pN₂ / P = 369.9 Torr/895.6 Torr = 0.4130
χAr = pAr / P = 82.7 Torr/895.6 Torr = 0.0923
A wave.
Scientists now recognize that light can behave as both a particle and a wave.
Answer:
Index fossil, any animal or plant preserved in the rock record of the Earth that is characteristic of a particular span of geologic time or environment.
Explanation:
True
Answer:
Heat transfer during melting of ice plays greater role in cooling of liquid water.
Explanation:
Temperature of ice = -10 °c
Temperature of water = 0 °c
When ice cube is dipped in to the water.the heat transfer
Q = m c ΔT
⇒ Q = 1 × 2.01 × 10
⇒ Q = 20.1 KJ
Heat transfer during melting of ice
= latent heat of ice
Latent heat of ice = 334 KJ
⇒
= 334 KJ
Heat transfer during melting of ice is greater value than heat transfer during warming of ice from -10°C to 0°C.
Thus heat transfer during melting of ice plays greater role in cooling of liquid water.