My best try would be d an element
When a sudden break or shift occurs the energy radiates it comes out of the water
Hard water<span>... is </span>water<span> that contains an appreciable quantity of dissolved minerals (like calcium and magnesium). </span>Soft water<span>... is treated </span>water<span> in which the only ion is sodium. As rainwater falls, it is naturally </span>soft<span>. </span>
Answer:
The correct answer is -
1. a) The bubbles will shrink, some may vanish.
2. a) Can A will make a louder and stronger fizz than can B.
Explanation:
In the first question, it is given that the bottle is not opened and therefore, squeezing the bottle filled with a carbonated drink will increase the pressure on the carbonated liquid which forces the bubbles to dissolve or displace or vanish as it moves to empty space.
Thus, the correct answer would be - The bubbles will shrink, some may vanish
In the second question, there are two different conditions for two different unopened cans of carbonated water that are different temperatures one at the garage with higher temperature and one in the fridge at low temperature. As it is known that higher the temperature less will be solubility of gas in liquid so gas in can A will be less soluble which means it has more gas and it will make louder and stronger fizz than B which was stored at low temperature.
thus, the correct answer would be - Can A will make a louder and stronger fizz than can B.
Answer:
The reactions free energy 
Explanation:
From the question we are told that
The pressure of (NO) is 
The pressure of (Cl) gas is 
The pressure of nitrosly chloride (NOCl) is 
The reaction is
⇆ 
From the reaction we can mathematically evaluate the
(Standard state free energy ) as

The Standard state free energy for NO is constant with a value

The Standard state free energy for
is constant with a value

The Standard state free energy for
is constant with a value

Now substituting this into the equation

The pressure constant is evaluated as

Substituting values


The free energy for this reaction is evaluated as

Where R is gas constant with a value of 
T is temperature in K with a given value of 
Substituting value
![\Delta G = -43 *10^{3} + 8.314 *298 * ln [0.0765]](https://tex.z-dn.net/?f=%5CDelta%20%20G%20%20%3D%20-43%20%2A10%5E%7B3%7D%20%2B%208.314%20%2A298%20%2A%20ln%20%5B0.0765%5D)

