Answer: Water is SUPER soluble and regarded as an universal solvent because it is polar in nature and dissolves most inorganic solutes and some polar organic solutes to form aqueous solutions.
Explanation:
WATER is a substance which is composed of the elements such as hydrogen and oxygen that are combined in the ratio of 2:1. The physical properties of water include:
--> it is a colourless, odourless and tasteless liquid and
--> the boiling point of water is 100°C(this is due to the presence of hydrogen bonding).
The solubility of a solute in a solvent at a particular temperature is the maximum amount of solute in moles or grams that will saturate 1000 dm³ or grams of the solvent.
Water is regarded as a universal solvent BECAUSE it is capable of dissolving many substances. This solubility helps maintain different processes in life such as acting as the solvent which helps cells transport and use substances like oxygen or nutrients.
Answer: 2.8275grams
Explanation: A buffer is made btw a weak acid and it salt. In a solution made by dissolving a weak acid in solution, equilibrium is set up btw ionised and unionised ion. For Benzoic acid
C6H5COOH....> C6H5COO- + H+
Ka = [C6H5COO-] [H+]/ [C6H5COOH].......(1)
using Ka = 6.5× 10^-5, [C6H5COOH] = 0.02M. PH= - log[H+] ....> [H+]= 10^-4M.
Putting the values in(1)
[C6H5COO-]= 6.5× 10^-5 × 0.02/ 10^-4
[C6H5COO-] = 0.013M = Molarity of sodium benzoate
Mole(C6H5COONa) = 0.013 × Volume = 0.013mol/litre × 1.5 litre
Mole(C6H5COONa) = 0.0195mol
Mass(C6H5COONa) = 0.0195 × Molar mass
Mass(C6H5COONa) = 2.8275g
Answer:

Explanation:
We can use Gay-Lussac's Law of Combining Volumes to solve this problem.
Gases at the same temperature and pressure react in the same ratios as their coefficients in the balanced equation.
1. Write the chemical equation.
Ratio: 1 L 3 L
N₂ + 3H₂ ⟶ 2NH₃
V/L: 2
2. Calculate the volume of H₂.
According to Gay-Lussac, 3 L of H₂ react with 1 L of N₂.
Then, the conversion factor is (3 L H₂/1 L N₂).

Given that there is 48 liters of gasoline to be burned and that 45 kJ of energy is released per gram of gasoline burned, the amount of energy that the gasoline fuel produces can then be calculated, First, we convert 48 liters of gasoline to units of mass (grams) in order to use the given conversion of 45 kJ per gram of gasoline. To do this, we use the density of gasoline which is 0.77 g/mL. The following expression is then used:
48 L gasoline x 1000 mL/L x 0.77 g/mL x 45 kJ/g gasoline = 1663200 kJ
<span>The amount of energy produced by burning 48 L of gasoline was then determined to be 1663200 kJ. </span>
Answer:
false
Explanation:
It is the opposite. Atoms are the smallest.