Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
Answer:
Its the first one. The cells are arranged for structure.
Explanation:
Animal cells do not need to maintain a shape since out bodies do it for us. Plant cells need something for structure.
The question is incomplete. Complete question is attached below
..............................................................................................................................
Correct Answer:
Option C i.e. I ~ III < IV < V < II
Reason:
During a nucleophilic subsitution reaction of chloroarenes, Cl- group is replaced by an nucleophile like OH-.
Order of reactivity, during such reactions depends on the electron density on carbon atom that is attached to Cl. Lower the electron density, greater will be the reactivity.Among the provided chloroarenes, electron density on C atom will be minimum in case of compound II, because of presence of electron withdrawing group (-NO2) at ortho and para position. Due to this, there will be large number of resonating structures. This signifies greater electron de-localization, and hence largest reactivity for nucleophilic substitution reaction.
Followed by this, compound V will show greater reactivity, due to presence of -NO2 group at para and one of the ortho position. Compound IV will have less number of resonating structures as compared to compound II and V, hence it will display poor reactivity towards nucleophilic substitution reaction.
Finally, compound 1 and III will minimum reactivity towards nucleophilic substitution reaction, because -NO2 group present at meta position (compound III) will not participate in resonance.