For each of the situations below, state whether it describes erosion, weathering, or possibly both.
Answer:
Erosion
Explanation:
The blowing away of the top layer of the soil at a Michigan farm is best described as scenario that shows wind erosion.
Erosion is the removal of the top layer of the earth on which plant grows. In short is the washing away of soil by stream or blowing away by wind.
When soil is blow away, it is a pure case of erosion. The process of erosion usually follows weathering or sometime occurs together with it.
Weathering is the physical disintegration and chemical decomposition of rocks to form sediments and soils.
Often times, the process of weathering and erosion occurs together. It is loose weathering products that are carried away during erosion.
In the soil layer at Michigan, the process of erosion by wind is current taking place by ablation.
Explanation:
As the total concentration is given as 1.2 mM. And, it is also given that salt present in the solution is NaCl.
As sodium chloride is an ionic compound so, when it is added to water then it will dissociate into sodium and chlorine ions as follows.

So, it means in total there will be formation of 2 ions when one molecules of NaCl dissociates.
Therefore, concentration of chlorine ions will be calculated as follows.
Concentration of
ions =
= 0.6 mM
Thus, we can conclude that the concentration of chloride ions is 0.6 mM.
From the calculations, the heat of fusion of the substance is 0.73 kJ
<h3>What is is the heat of freezing?</h3>
The heat of freezing is the energy released when the substance is converted from liquid to solid.
Now we know that the molar mass of the substance is 82.9 g/mol hence the number of moles of the substance is; 13.3 g /82.9 g/mol = 0.16 moles
Now the heat of fusion shall be;
H = 4.60 kj/mol * 0.16 moles
H = 0.73 kJ
Learn more about freezing:brainly.com/question/3121416
#SPJ4
Answer:
In order to balance the chemical equation, you need to make sure the number of atoms of each element on the reactants side is equal to the number of atoms of each element on the product side. In order make both sides equal, you will need to multiply the number of atoms in each element until both sides are equal.
Hope this helped you.