Answer:
D. 18,800 J/mol
Explanation:
We need to use the Arrhenius equation to solve for this problem:
, where k is the rate constant, A is the frequency factor,
is the activation energy, R is the gas constant, and T is the temperature in Kelvins.
We want to find the value of
, so let's plug some of the information we have into the equation. The gas constant we can use here is 8.31 J/mol-K.
At 0°C, which is 0 + 273 = 273 Kelvins, the rate constant k is
. So:


At 20°C, which is 20 + 273 = 293 Kelvins, the rate constant k is
. So:


We now have two equations and two variables to solve for. We just want to find Ea, so let's write the first equation for A in terms of Ea:


Plug this in for A in the second equation:


After some troublesome manipulation, the answer should come down to be approximately:
Ea = 18,800 J/mol
The answer is thus D.
Answer:
The pH of the solution is 1.66
Explanation:
Step 1: Data given
Number of moles HCl = 0.022 moles
Molar mass of HCl = 36.46 g/mol
Step 2: Calculate molarity of HCl
Molarity HCl = moles HCl / volume
Molarity HCl = 0.022 moles / 1 L = 0.022 M
[HCl] = [H+] = 0.022 M
Step 3: Calculate pH
pH = -log [H+]
pH = -log(0.022)
pH = 1.66
The pH of the solution is 1.66
Amorphous and crystalline are the two types of matter classified by the arrangement of its atoms.
Explanation:
There are several criteria present to classify the matters present in this universe. We can classify the matter based on their physical state like solid, liquid and gas. We can also classify the matter based on their composition like pure substance and mixtures. Similarly another way of classifying the matter is based on their arrangement of atoms. If the atoms are arranged in an orderly manner, then they are termed as crystalline matter. And if the atoms are arranged in a random way, then they are termed as amorphous matter.
Thus, the two types of matter classified by the arrangement of its atoms are amorphous and crystalline.