Potential energy is measured using formula Ep=mgh
m=mass (kg)
g= acceleration due to gravity (which is 9.8 on earth)
h= height in metres above ground
For this question
m=0.1
g=9.8
h=1
So Ep=0.1(9.8)(1)
Ep=0.98 Joules
When it is dropped all of this potential energy is converted into kinetic energy which can be measured using formula
Ek=1/2m(v^2) (v=final velocity)
Since all potential energy in this q is converted to kinetic we know Ek=0.98Joules and our mass is the same (0.1kg)
So when we sub everything in we get
0.98=1/2(0.1)(v^2)
0.98=0.05(v^2)||divide both side by 0.05
19.6=v^2 ||square root both sides
v=4.4 m/s
Answer:
B) A stack of books is carried at waist level across a room
Explanation:
Work is defined as:

where
F is the force applied
d is the displacement of the object
is the angle between the direction of the force and of the displacement
From the formula, we see that the work done is zero when the force and the displacement are perpendicular to each other. Let's now analyze each situation:
A) A bookcase is slid across carpeting. --> work is done, because the force that pushes the bookcase is in the same direction of the displacement
B) A stack of books is carried at waist level across a room. --> no work is done, because the force to carry the book is vertical, while the displacement of the books is horizontal
C) A chair is lifted vertically with respect to the floor. --> work is done, because the force that lifts the chair is vertical, and the displacement is vertical as well
D) A table is dropped onto the ground. --> work is done, because the force of gravity (that makes the table falling down) is vertical and the displacement of the table is also vertical.
28J because mechanical energy is the sum of the potential energy and kinetic energy
Answer:
c. 4 meters/second
Explanation:
The formula to calculate average speed is:
