Answer: 6117.58 J
Explanation:
We know that W=Fd*cos(theta) where theta is the angle between the displacement and the force.
In this case, we are given that F=225 N, d=30 m, and theta=25 degrees.
Plugging all this in we get
W=225*30*cos(25)=6117.58 J
Answer:
There are three types of material as per the condition of charge flow
1) Conductor
2) Insulator
3) Semiconductor
1) Conductors
As we know that conductors are those which offer very small resistance to the flow of charge
Resistivity of the conductors are very small
2) Insulators
These type of materials offer large resistance to the flow of charges and it will not pass the current through it
So resistivity of the insulators are large as compared to conductors
Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
Answer:
T = 1010 degree Celsius
Explanation:
mass of ball (Mb) = 100 g
mass of water (Mw) = 400 g
temp of water = 0 degree
specific heat of platinum (C) = 0.04 cal/g degree celsius
we can calculate the temperature of the furnace from the equation before
Mb x C x (temp of furnace (T) - equilibrium temp) = Mw x (equilibrium temp - temp of furnace)
100 x 0.04 x ( T - 10) = 400 x (10 - 0)
4 (T - 10) = 4000
T - 10 = 1000
T = 1010 degree Celsius