Answer:
Explanation:
Given
Time taken to reach ground is 
Malda initial velocity 
Let h be the height of Cliff
using 
where, u=initial velocity
t=time
In first case chirpy drop downward thus u=0


For Milada there is horizontal velocity u=95 cm/s=0.95 m/s[/tex]
time taken to reach the ground will be same so distance traveled in this time with 0.95 m/s horizontal velocity is given by

Explanation:
Take south to be negative.
a. Momentum is mass times velocity.
p = mv
p = (540 kg) (-6 m/s)
p = -3240 kg m/s
p = 3240 kg m/s south
b. Impulse = change in momentum
J = Δp
Since the mass is constant:
J = mΔv
J = (540 kg) (-4 m/s − (-6 m/s))
J = 1080 kg m/s
J = 1080 kg m/s north
Answer:
The speed after being pulled is 2.4123m/s
Explanation:
The work realize by the tension and the friction is equal to the change in the kinetic energy, so:
(1)
Where:

Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.
Additionally, the kinetic energy is equal to
, so if the initial velocity
is equal to zero, the initial kinetic energy
is equal to zero.
Then, replacing the values on the equation and solving for
, we get:


So, the speed after being pulled 3.2m is 2.4123 m/s
The orbital radius is: 
Explanation:
The problem is asking to find the radius of the orbit of a satellite around a planet, given the orbital speed of the satellite.
For a satellite in orbit around a planet, the gravitational force provides the required centripetal force to keep it in circular motion, therefore we can write:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the satellite
r is the radius of the orbit
v is the speed of the satellite
Re-arranging the equation, we find:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly