The wavelength is 2m.
Hence, Option c) 2m is the correct answer
Given that;
Frequency;
Speed; 
Wavelength; 
using the expression for the relations between wavelength, frequency and speed of wave:

Where
is wavelength, f is frequency and v is speed.
We substitute our given values into the equation

The wavelength is 2m.
Hence, Option c) 2m is the correct answer.
To learn more about wavelength, click here: brainly.com/question/1347107
Because you see yourself the opposite way in a mirror. So yes your “seeing” yourself but not how everyone else sees you.
Answer:
Soap breaks up the oil into smaller drops, which can mix with the water. It works because soap is made up of molecules with two very different ends (one end of molecules are hydrophilic, so they love water; the other end of molecules is hydrophobic, so they hate water).
The volume of a gas will increase by ten times if the temperature is increased by ten times.
<h3>Relationship between the volume of a gas and temperature</h3>
The relationship between the volume of a gas and its temperature is explained in Charles' law of gases which states that:
- The volume of a fixed mass of gas is directly proportional to its temperature provided the pressure of the gas is kept constant.
This means that if the temperature of a gas is increased by any given factor, the volume increases by the same factor proportionally.
Therefore, if the volume of a gas will increase by ten times if the temperature is increased by ten times.
Learn more about gas volume and temperature at: brainly.com/question/18706379
-- The string is 1 m long. That's the radius of the circle that the mass is
traveling in. The circumference of the circle is (π) x (2R) = 2π meters .
-- The speed of the mass is (2π meters) / (0.25 sec) = 8π m/s .
-- Centripetal acceleration is V²/R = (8π m/s)² / (1 m) = 64π^2 m/s²
-- Force = (mass) x (acceleration) = (1kg) x (64π^2 m/s²) =
64π^2 kg-m/s² = 64π^2 N = about <span>631.7 N .
</span>That's it. It takes roughly a 142-pound pull on the string to keep
1 kilogram revolving at a 1-meter radius 4 times a second !<span>
</span>If you eased up on the string, the kilogram could keep revolving
in the same circle, but not as fast.
You also need to be very careful with this experiment, and use a string
that can hold up to a couple hundred pounds of tension without snapping.
If you've got that thing spinning at 4 times per second and the string breaks,
you've suddenly got a wild kilogram flying away from the circle in a straight
line, at 8π meters per second ... about 56 miles per hour ! This could definitely
be hazardous to the health of anybody who's been watching you and wondering
what you're doing.