Answer:
15.01 Liters
Explanation:
T₁ = Initial temperature = 25°C = 298.15 K
T₂ = Final temperature = 100°C = 373.15 K
V₁ = Initial volume = 12 mL
Here, pressure is constant so we apply Charles Law

∴ Final volume at 100°C is 15.01 Liters.
Answer:
Electric field due to two charges is given as

Explanation:
As we know that two charges are opposite in nature
So the electric field at the mid point of two charges will add together
so the net field is given as

now we have


now we have


Answer:
6 days.
Explanation:
From radioactivity, The expression for half life is given as,
R/R' = 2⁽ᵃ/ᵇ)................... Equation 1
Where R = original mass of the radioactive substance, R' = Remaining mass of the radioactive substance after decay, a = Total time taken to decay, b = half life.
Given: R = 80 g, R' = 10 g, b = 2 days.
Substitute into equation 1
80/10 = 2⁽ᵃ/²⁾
8 = 2⁽ᵃ/²⁾
2³ = 2⁽ᵃ/²)
Equating the base and solving for a
3 = a/2
a = 2×3
a = 6 days.
Answer:
Relative to the ground, the velocity of the aircraft is 240 km/hr
Explanation:
Relative velocity is different from normal velocity;
When 2 objects are moving in opposite directions towards each other, they will appear to be faster than they actually are;
This is known as the relative velocity;
The information tells us we have the aircraft moving 320 km/hr northwards relative to the wind;
The wind is in the opposite direction at 80 km/hr;
R = relative velocity of the aircraft
v = actual velocity of the aircraft
w = velocity of the wind
R = v + w
Note: if the wind was moving in the same direction, the formula would be R = v - w
320 = v + 80
v = 320 - 80
v = 240
The velocity relative to the ground is simply the actual velocity as the ground doesn't move;
So, relative to the ground, the velocity of the aircraft is simply 240 km/hr