Answer B. 112 m
Step-by-Step Explanation
initial velocity u = 20 m /s
final velocity v = 36 m /s
time taken t = 4 s
acceleration = (v - U) / t
= (36 - 20) / 4
a=4m/s2
from the formula
7-u2=2as , sis distance covered
putting the values
362-202=2×4×s
1296 - 400 = 8 x S
S= 112 m
Formulas change from F to degree C : C = ( F - 32 )/1.8
so we have (77-32)/1.8 = 25 oC
ok done. Thank to me :>
Answer:
120 miles per hour.
Explanation:
We need to find the time it takes my parents to drive home from the cottage. Since my father drives at 60 miles per hour, and the cottage is 240 miles from our home, and distance = speed × time. So, time = distance/speed = 240 mi/60 mi/h = 4 h.
So, it will take my father 4 hours to drive home from the cottage.
Since I have 2 hours to prepare for the party, the time left for me to drive to the cottage is 4 - 2 hrs = 2 hrs.
So, I'm supposed to drive to the cottage in at most 2 hours.
The speed at which I must drive in this time period is thus, speed = distance/time = 240 miles/2 hours = 120 miles per hour.
So, I must drive at a minimum speed of 120 miles per hour.
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.
Asteroid 1 has more mass because the same force exerted caused this asteroid to move less therefore having more mass