Answer:
1
The mass of the Potassium-40 is 
2
The Dose per year in Sieverts is 
Explanation:
From the question we are told that
The isotopes of potassium in the body are Potassium-39, Potassium-40, and Potassium-
41
Their abundance is 93.26%, 0.012% and 6.728%
The mass of potassium contained in human body is
per kg of the body
The mass of the first body is 
Now the mass of potassium in this body is mathematically evaluated as

substituting value


The amount of Potassium-40 present is mathematically evaluated as
0.012% * 0.024


The dose of energy absorbed per year is mathematically represented as

Where E is the energy absorbed which is given as 
Substituting value


The Dose in Sieverts is evaluated as



Answer:
For real gas the volume of a given mass of gas will increase with increase in temperature.
Explanation:
With the piston head locked in place and place above the fire,the volume of the gas will increase,because the volume of a given mass of gas increases with increase temperature.
You'll never get the correct answer without the correct conversion factor. Note carefully that you have no decimal. It should be
<span>1 km = 0.6214 miles </span>
<span>1000 m = 1 km </span>
<span>60 seconds = 1 minute </span>
<span>60 minutes = 1 hour. </span>
<span>2.998E8 m/s x (1 km/1000m) x (0.6214 miles/km) x (60 sec/min) x (60 min/hr) = ?</span>
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2