Answer:
a) 
b) 

Explanation:
Searching the missed information we have:
E: is the energy emitted in the plutonium decay = 8.40x10⁻¹³ J
m(⁴He): is the mass of the helium nucleus = 6.68x10⁻²⁷ kg
m(²³⁵U): is the mass of the helium U-235 nucleus = 3.92x10⁻²⁵ kg
a) We can find the velocities of the two nuclei by conservation of linear momentum and kinetic energy:
Linear momentum:


Since the plutonium nucleus is originally at rest,
:
(1)
Kinetic Energy:

(2)
By entering equation (1) into (2) we have:
Solving the above equation for
we have:

And by entering that value into equation (1):
The minus sign means that the helium-4 nucleus is moving in the opposite direction to the uranium-235 nucleus.
b) Now, the kinetic energy of each nucleus is:
For He-4:

For U-235:

I hope it helps you!
Answer:
the energy required for the extension is 12.25 J
Explanation:
Given;
force constant of trampoline spring, k = 800 N/m
extension of trampoline spring, x = 17.5 cm = 0.175 m
The energy required for the extension is calculated as;
E = ¹/₂kx²
E = 0.5 x 800 x 0.175²
E = 12.25 J
Therefore, the energy required for the extension is 12.25 J
I’m pretty sure the answer is A
Answer:
1.25 focal lengths
Explanation:
The lens equation states that:

where
f is the focal length
p is the object distance
q is the image distance
In this problem, the image is 4 times as far from the lens as is the object: this means that

If we substitute this into the lens equation and we rearrange it, we get

so, the object distance measured in focal lengths is
1.25 focal lenghts
Answer:
Explanation:
This is a case of interference of sound , akin to YDSE in optics .
Here, like interference dark and bright fringes, region of silence and intense sound will be formed due to destructive and constructive interference respectively.
Here d = distance between two sources = 5 m
D = distance of source and screen = 12m
position of first destructive interference
= λ D /2d
1 = λ 12 /2x 5
λ = 5 / 6 m
frequency = v / λ
= 343 x 6/ 5
= 411.6 Hz