1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kaheart [24]
4 years ago
14

Tina has 92 flowers,she takes some flowers to school,there are 33 flowers how many flowers dose Tina take to school?

Mathematics
2 answers:
erastovalidia [21]4 years ago
4 0
92-33=59
Tina took 59 flowers to school
Dmitry_Shevchenko [17]4 years ago
4 0

Answer:

59 flowers

Step-by-step explanation:

92-33=59

You might be interested in
Can someone pls help me quickly
nydimaria [60]

Answer:

B AND F

Step-by-step explanation:

!!!!!!!!

4 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
If u had 693 cats and 593 died
Katen [24]

Answer:

you would have 100 cats left

4 0
3 years ago
What is 100 to the power 3 over 2<br><br> 8 to the power 4 over 3<br><br> 49 to the power 3 over 2
NeX [460]
1. 500,000
2. 1,365 1/3
3. 58,824 1/2
8 0
3 years ago
A particular metal alloy a has 20% iron and another alloy b contains 60% iron. how many kilograms of each alloy should be combin
Veronika [31]
Let t and s represent the masses of 20% and 60% alloys respectively.

t+s=80, s=80-t

(0.2t+0.6s)/80=0.52  multiply both sides by 80

0.2t+0.6s=41.6, now using s=80-t in this equation gives us:

0.2t+0.6(80-t)=41.6  perform indicated multiplication on left side

0.2t+48-0.6t=41.6  combine like terms on left side

-0.4t+48=41.6  subtract 48 from both sides

-0.4t=-6.4  divide both sides by -0.4

t=16, since s=80-t

s=64

So 16kg of 20% alloy is mixed with 64kg of 60% allow to make 80kg of a 52% alloy.
5 0
4 years ago
Other questions:
  • In December the average total rainfall in all of the desert together is 0.89 mm explain how to use the figures from the table to
    10·1 answer
  • If cos x = <img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D" id="TexFormula1" title="\frac{1}{4}" alt="\frac{1}{4}" align
    11·1 answer
  • Write the sentence as an equation<br><br> 225 is 266 minus D?
    14·1 answer
  • There are 105 members of the high school band. Of these members, 1/5 play percussion instruments. How many members play percussi
    5·1 answer
  • A square room has an area of 130m². What is the length of one side?
    8·1 answer
  • ℜ 0, -180 is the same rotation as _______.
    11·2 answers
  • If y = 5x - 7, determine the value of y when x = -3
    14·2 answers
  • ≡Smee is walking on a trail in the Everglades when he comes to an alligator-infested lake. He wants to build a bridge across the
    13·2 answers
  • If k(x) = 5x - 6, which<br> expression is equivalent to (k + k)(4)?
    15·2 answers
  • What is the best approximation of √39 to the nearest tenths ? ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!