Answer: a) 
b) 
Explanation: Visible light is a form of electromagnetic wave.
Wavelength is defined as the distance between two successive crests of a wave. It is represented as symbol
.
Frequency is defined as the number of complete cycles happening per second. It is represented by the symbol
.
Wavelength and Frequency follow inverse relation,

where, c = speed of light = 
Wavelength and frequency of a wave is usually expressed in a range.
a) 
b) 
<u>Answer:</u> The correct answer is the mass number of the most common isotope of the element is 24.
<u>Explanation:</u>
We are given:
An element having atomic number 12 is magnesium and atomic mass of the element is 24.305
The image corresponding will be 
The number '24.305' is the average atomic mass of magnesium element.
Average atomic mass is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:

Average atomic mass of magnesium = 24.305 amu
As, the average atomic mass of magnesium lies closer to the mass of Mg-24 isotope. This means that the relative abundance of this isotope is the highest of all the other isotopes.
The 'Mg-24' isotope is the most common isotope of the given element.
Hence, the correct answer is the mass number of the most common isotope of the element is 24.
Electronegativity<span> is the measure of the ability of an atom to attract electrons to itself. Fluorine is the most </span>electronegative<span> element and francium is one of the least</span>electronegative<span>. ... The </span>molecule's polarity<span> will be determined on the negative and positive regions on the outer atoms in the </span>molecule<span>.</span>
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.