Answer:
-41. 47
Explanation:
m = q / Cp x T
m = Mass
q = Energy (or joules)
Cp = Heat Capacity
T = Change in Temperature
Water's heat capacity is always 4.18.
This is the formula you'll need for change in temperature:
Final - Initial
So, 33 - 78 = -45
m = 7800 / 4.18 x -45
= -41.47
Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

We will balance the equation in the following order: metals, amethals, carbon, hydrogen and oxygen (the most common order).
The metal present in the equation is Sr, which is already balanced (there are 1 on each side of the equation).
The amethal present in the equation is Cl. There is 2 Cl in the left side and only one in the right side. So, we will multiply the quantity of the molecule that contains Cl by 2. Doing this, we'll obtain:
Looking at the equation, we can see that it is now fully balanced. Hence, a balanced equation of the reaction is:
B. 1 mole of beryllium, 2 moles of oxygen, 2 moles of hydrogen