Answer: cools down and keeps going
Explanation:
Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.
Reactants Hydrogen: 5
Products Hydrogen: 5
Reactants Carbon: 3
Products Carbon: 3
Reactants Oxygen: 4
Products Oxygen: 5
Answer:
<h2>mass = 200.23 g</h2>
Explanation:
The density of a substance can be found by using the formula

Since we are finding the mass
<h3>mass = Density × volume</h3>
From the question
Density = 0.81 g/mL
volume = 247.2 mL
Substitute the values into the above formula and solve for the mass
mass = 0.81 × 247.2
= 200.232
We have the final answer as
<h3>mass = 200.23 g to 2 decimal places</h3>
Hope this helps you
The density is 3 because the density remains the same.