Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>
The metallic elements located anywhere between 3-12 of the periodic table
The H⁺ ion concentration can be calculated from pH values using the following equation:
![pH=-log[H⁺]](https://tex.z-dn.net/?f=pH%3D-log%5BH%E2%81%BA%5D)
1.) Given pH = 2
Using the above equation, 2 = - log [H⁺]
Therefore, [H⁺] = 10⁻² mol/L
2.) Given pH = 6
Using the same equation, we have 6 = - log [H⁺]
Hence, [H⁺] = 10⁻⁶ mol/L
3.) Taking the ratio of [H⁺] for pH = 2 and pH = 6, we have
= 10⁴
So, there are 10,000 times more H⁺ ions in a solution of pH = 2 than that of pH = 6.
A heavy element is an element with an atomic number greater than 92. The first heavy element is neptunium (Np), which has an atomic number of 93. Some heavy elements are produced in reactors, and some are produced artificially in cyclotron experiments.