1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seraphim [82]
3 years ago
13

A 50 Ibm block is moving at 4 ft/s. Find Its total kinetic energy? Also find Its kinetic energy per unit mass is

Engineering
1 answer:
Kamila [148]3 years ago
3 0

Answer:

Total kinetic energy= 400 puondal foot

Kinetic energy per unit mass= 8 (poundaul foot/lb)

Explanation:

To determine the total kinetic energy of the block we use the equation:

Kinetic energy = (1/2) × m × (v^{2}) = (1/2) × (50lb) × (4 foot/s)^{2}) =

= 400 poundal foot

To establish the kinetic energy per unit of mass we must simply divide the value of the total kinetic energy obtained previously by the mass of the block obtaining:

Kinetic energy per unit mass= (400 poundal foot) / (50lb) =

= 8 (poundaul foot/lb)

You might be interested in
Close to 16 billion pounds of ethylene glycol (EG) were produced in 2013. It previously ranked as the twenty-sixth most produced
bekas [8.4K]

Answer:

a) 0.684

b) 0.90

Explanation:

Catalyst

EO + W → EG

<u>a) calculate the conversion exiting the first reactor </u>

CAo = 16.1 / 2   mol/dm^3

Given that there are two stream one  contains 16.1 mol/dm^3 while the other contains   0.9 wt% catalyst

Vo = 7.24 dm^3/s

Vm = 800 gal = 3028 dm^3

hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins

next determine the value of conversion exiting the reactor ( Xai ) using the relation below

KIm = \frac{Xai}{1-Xai}  ------ ( 1 )

make Xai subject of the relation

Xai = KIm / 1 + KIm  ---  ( 2 )

<em>where : K = 0.311 ,  Im = 6.97   ( input values into equation 2 )</em>

Xai = 0.684

<u>B) calculate the conversion exiting the second reactor</u>

CA1 = CA0 ( 1 - Xai )

therefore CA1 = 2.5438 mol/dm^3

Vo = 7.24 dm^3/s

To determine the value of the conversion exiting the second reactor  ( Xa2 ) we will use the relation below

XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )

<em> where : Xai = 0.684 , Im = 6.97,  and K = 0.311  ( input values into equation 3 )</em>

XA2 = 0.90

<u />

<u />

<u />

4 0
3 years ago
As the impurity concentration in solid solution of a metal is increased, the tensile strength:________.a) decreasesb) increasesc
valkas [14]

Answer:

Increases

Explanation:

By inhibiting the motion of dislocations by impurities in a solid solutions, is a strengthening mechanism. In solid solutions it is atomic level strengthening resulting from resistance to dislocation motion. Hence, the strength of the alloys can differ with respect to the precipitate's property. Example, the precipitate is stronger (ability to an obstacle to the dislocation motion) than the matrix and it shows an improvement of strength.

5 0
4 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
3 years ago
the coil polarity in a waste spark system is determined by the direction in which the coil is wound (left hand rule for conventi
zaharov [31]
The coil polarity in a waste-spark system is determined by the direction in which the coil is wound (left-hand rule for conventional current flow)and can’t be changed. For example, if a V-8 engine has a firing order of 18436572 and the number 1 cylinder is on compression, which cylinder will be on the exhaust stroke?
3 0
3 years ago
All of these are true about GMA (MIG) welding EXCEPT that:
Hatshy [7]

Answer:

the welding gun liner regulates the shielding gas.

Explanation:

The purpose of the welding gun liner is to properly position the welding wire from the wire feeder till it gets to the nozzle or contact tip of the gun. <em>Regulation of the shielding gas depends on factors such as the speed, current, and type of gas being used. </em>In gas metal arc welding, an electric arc is used to generate heat which melts both the electrode and the workpiece or base metal.

The electric arc produced is shielded from contamination by the shielding gas. The heat generated by the short electric arc is low.

3 0
3 years ago
Other questions:
  • Three return steam lines in a chemical processing plan enter a collection tank operating at a steady state at 1 bar. Steam enter
    11·1 answer
  • A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation. Obtain the yield strength and ultimate str
    10·1 answer
  • CNG is a readily available alternative to
    5·1 answer
  • Two cars A and B leave an intersection at the same time. Car A travels west at an average speed of x miles per hour and car B tr
    9·1 answer
  • Draw an ERD for each of the following situations. (If you believe that you need to make additional assumptions, clearly state th
    15·1 answer
  • Getting a haircut from a barber is an example of a service that can be purchased. Please select the best answer from the choices
    9·2 answers
  • (d) Suppose two students are memorizing a list according to the same model dL dt = 0.5(1 − L) where L represents the fraction of
    6·1 answer
  • Which of the following is an example of a social need?
    5·1 answer
  • How many times has the ITU-R revised the CCIR 601 international standard? A. four B. five C. six D. seven
    8·1 answer
  • What are the most used electronic tools for electronic works?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!