1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
13

Is 11/128 equal to a terminating decimal or a repeating decimal ? Explain how you know

Mathematics
2 answers:
Alika [10]3 years ago
4 0

Answer:

Step-by-step explanation:

i dont want to add steps but it is terminateing decimal

Ostrovityanka [42]3 years ago
3 0

We need to determine whether \frac{11}{128} is a terminating decimal or a repeating decimal.

Let's solve this question using the long division method

First, let's identify the divisor and dividend. The number to be divided is 11 hence this is the dividend, and it needs to be divided by 128 which is the divisor

Next, since the divisor (128) is greater than the dividend (11) it can not divide 11. Hence, we will introduce a decimal point in quotient, and append a 0 next to 11 and divide 110 by 128. Again, 128 is greater than 110 so we will introduce a 0 in the quotient, and append another 0 next to 110, and will divide 1100 by 128. We will see what multiple of 128 is less than or equal to 1100. That multiple is 8. So we write 8 in the quotient and multiply 128 with 8 and subtract the product (128*8 = 1024) from 1100. The remainder that we get is 76.

Next, we append a 0 to the remainder and divide 760 by 128. Now, we see what multiple of 128 is less than or equal to 760. That multiple is 5. So we write 5 next to the quotient and multiply 128 with 5 and subtract the product (640) from 760. Now, the remainder is 120.

Next, we append a 0 to the remainder and divide 1200 by 128. Now, we see what multiple of 128 is less than or equal to 1200. That multiple is 9. So we write 9 next to the quotient and multiply 128 with 9 and subtract the product (1152) from 1200. Now, the remainder is 48.

Next, we append a 0 to the remainder and divide 480 by 128. Now, we see what multiple of 128 is less than or equal to 480. That multiple is 3. So we write 3 next to the quotient and multiply 128 with 3 and subtract the product (384) from 480. Now, the remainder is 96.

Next, we append a 0 to the remainder and divide 960 by 128. Now, we see what multiple of 128 is less than or equal to 960. That multiple is 7. So we write 7 next to the quotient and multiply 128 with 7 and subtract the product (896) from 960. Now, the remainder is 64.

Next, we append a 0 to the remainder and divide 640 by 128. Now, we see what multiple of 128 is less than or equal to 640. That multiple is 5. So we write 5 next to the quotient and multiply 128 with 5 and subtract the product (640) from 640. Now, the remainder is 0.

Hence, we have solved the entire problem

Last, we look at the quotient i.e. 0.0859375, which is the solution to the problem. We see that the quotient has a definite number of digits in it, and terminates at 5. Hence, this is a terminating decimal.

A repeating decimal is one in which a particular pattern after the decimal point keeps re-occuring, which is not the case here. Hence, \frac{11}{128} is a terminating decimal.

Please refer to the attached image for visualization

You might be interested in
A line passes through the point (0, 2) and has a slope of -1/4 What is the equation of the line?
maw [93]

Answer:

The required equation is x + 4y = 8 !!

Step-by-step explanation:

<em><u>Given</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em><em> </em><em>the</em><em> </em><em>line</em><em> </em><em>pass</em><em>es</em><em> </em><em>t</em><em>hrough</em><em> </em><em>the</em><em> </em><em>point</em><em> </em><em>(</em><em> </em><em>0</em><em> </em><em>,</em><em> </em><em>2</em><em> </em><em>)</em><em> </em><em>and</em><em> </em><em>the</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>line</em><em> </em><em>is</em><em> </em><em>(</em><em> </em><em>-</em><em>1</em><em>/</em><em>4</em><em> </em><em>)</em><em> </em>

<em>•</em><em> </em><em>Also</em><em>,</em><em> </em><em>to</em><em> </em><em>form</em><em> </em><em>an</em><em> </em><em>eq</em><em>uation</em><em> </em><em>when</em><em> </em><em>a</em><em> </em><em>po</em><em>int</em><em> </em><em>throu</em><em>gh</em><em> </em><em>which</em><em> </em><em>line</em><em> </em><em>passes</em><em> </em><em>and</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>line</em><em> </em><em>is</em><em> </em><em>given</em><em> </em><em>we</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>formula</em><em> </em><em>;</em>

<em>(</em><em> </em><em>y</em><em> </em><em>-</em><em> </em><em>y1</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>m</em><em> </em><em>(</em><em> </em><em>x</em><em> </em><em>-</em><em> </em><em>x1</em><em> </em><em>)</em>

<em>Where</em><em> </em><em>,</em><em> </em><em>y</em><em> </em><em>and</em><em> </em><em>x</em><em> </em><em>are</em><em> </em><em>vari</em><em>ables</em><em> </em>

<em>and</em><em> </em><em>(</em><em> </em><em>x1</em><em> </em><em>,</em><em> </em><em>y1 </em><em>)</em><em> </em><em>are</em><em> </em><em>the</em><em> </em><em>po</em><em>ints</em><em> </em><em>through</em><em> </em><em>which</em><em> </em><em>line </em><em>passes</em><em> </em>

<em>also</em><em>,</em><em> </em><em>m</em><em> </em><em>=</em><em> </em><em>slope</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>re</em><em>quired</em><em> </em><em>line</em><em> </em>

<em>Here</em><em> </em><em>,</em><em> </em><em>x1</em><em> </em><em>=</em><em> </em><em>0</em><em> </em><em>,</em><em> </em><em>y1</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>and</em><em> </em><em>m</em><em> </em><em>=</em><em> </em><em>(</em><em> </em><em>-1</em><em>/</em><em>4</em><em> </em><em>)</em><em> </em>

<em>[</em><em> </em><em>Ref</em><em>er to</em><em> the</em><em> attached</em><em> file</em><em> for</em><em> </em><em>furth</em><em>er</em><em> </em><em>process</em><em> </em><em>]</em>

3 0
3 years ago
9x - 4y? +72x–24y— 36–0
earnstyle [38]
Not is posible because no exist a igualty
3 0
3 years ago
Explain why two obtuse angles cannot be supplementary to another.
Nuetrik [128]
It's impossible. Supplements need to add up to 180 degrees, and in order to be obtuse, the angles would both need to be larger than 90 degrees.
5 0
2 years ago
Read 2 more answers
5+2x=2x+6<br> What's the answer?
Marina86 [1]

<u>Answer:</u>

Below!

<u>Step-by-step explanation:</u>

<u>We can solve this with the help of equations.</u>

  • 5 + 2x = 2x + 6
  • => -2x + 2x = -5 + 6
  • => 0 ≠ 1

<u>Since we are getting 0 ≠ 1 as our result, the problem has </u><u>no solution.</u>

Hoped this helped.

BrainiacUser1357

3 0
2 years ago
Alex purchased 29 4x6 prints and 16 5x7 prints from an online printing service and paid $22.89. If 5x7 prints cost $0.84 more th
viktelen [127]

Answer:

23x93x66x33ans is 20000this is and of your qustion

4 0
2 years ago
Other questions:
  • PLEASE ANSWER ASAP 10 points! If a scale factor between zero and one is used, the dilation will shrink the pre-image. True or fa
    6·1 answer
  • Sophia is designing a piece of square art that must be four feet on each side. Which method could she use to most accurately det
    10·2 answers
  • What is the point used in the equation of the line y+4=1/2(x-2)
    10·1 answer
  • Problem Page
    15·1 answer
  • What is the value of x for y = 12 (4x + 6) when y = 8?<br> Plz I’m so lost
    14·1 answer
  • What is the value of x in the equation below?<br> (12x– 24) = 16<br> o<br> оооо<br> =
    11·2 answers
  • Is 92 fluid ounces greater than 8 pints
    15·2 answers
  • Can i get help for this please
    5·2 answers
  • Please please help i’ll give brainliest tysm:))
    15·2 answers
  • Noah uses 1/2 of a cup of vinegar in his salad dressing recipe. How much vinegar would Noah use to make 3 1/6 recipes? Write you
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!