The base units used in the metric system are meter for the measurement of distance or displacement, liter as unit measurement of volume, kilogram as a unit of measurement of mass and seconds as unit of measurement of time. The answer is here is D. gram.
Answer:
The particles that compose a gas are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible.
Explanation:
This is a postulate of the Kinetic Molecular Theory.
A is wrong. KMT assumes the that the volume of the particles is negligible.
B is wrong. KMT assumes that the distance between the particles is muck greater than their size.
D is wrong. It takes the large distances as a fact. KMT uses this as an assumption.
Answer:
I think it is the second one
Explanation:
Because what the cold water did to the table salt, is that it separated its molecules dissolving the salt.
even though the rock salt was in hot water it was a bigger particle. But the big difference was only because the water temperature ️.
Answer:- 4.36 kPa
Solution:- At constant volume, the pressure of the gas is directly proportional to the kelvin temperature.

Where the subscripts 1 and 2 are representing initial and final quantities.
From given data:
= 1.049 kPa
= ?
= 7.39 K
= 30.70 K
For final pressure, the equation could also be rearranged as:

Let's plug in the values in it:

= 4.36 kPa
So, the new pressure of the gas is 4.36 kPa.
Answer:
One of each
Explanation:
Be is in Group 2, so it loses its two valence electrons in a reaction to form Be²⁺ ions.
Carbonate ion has the formula CO₃²⁻.
We can use the criss-cross method to work out the formula of beryllium carbonate.
The steps are
Write the symbols of the anion and cation.
Criss-cross the numbers of the charges to become the subscripts of the other ion.
Write the formula with the new subscripts.
Divide the subscripts by their highest common factor.
Omit all subscripts that are 1.
When you use this method with Be²⁺ and CO₃²⁻, you might be tempted to write the formula for the beryllium carbonate as Be₂(CO₃)₂
However, you can divide the subscripts by their largest common factor (2).
This gives you the formula Be₁(CO₃)₁.
We omit subscripts that are 1, so the correct formula is
BeCO₃
There is one Be²⁺ ion and one CO₃²⁻ ion in a formula unit of beryllium carbonate.