Answer: I just took the test, the answer is A.
Explanation:
Answer:
the answer is 26.718 inches or
26.76 miles
Answer: a
Explanation:
Industry uses only about 18% while the others use around 70-90% of water.
YW!!! please mark branlest!!!! =^.^=
Answer:
<h2>The first thing to do here is to use the molarity and the volume of the initial solution to figure out how many grams of copper(II) chloride it contains.</h2><h2 /><h2>133</h2><h2>mL solution</h2><h2>⋅</h2><h2>1</h2><h2>L</h2><h2>10</h2><h2>3</h2><h2>mL</h2><h2>⋅</h2><h2>7.90 moles CuCl</h2><h2>2</h2><h2>1</h2><h2>L solution</h2><h2>=</h2><h2>1.051 moles CuCl</h2><h2>2</h2><h2 /><h2>To convert this to grams, use the compound's molar mass</h2><h2 /><h2>1.051</h2><h2>moles CuCl</h2><h2>2</h2><h2>⋅</h2><h2>134.45 g</h2><h2>1</h2><h2>mole CuCl</h2><h2>2</h2><h2>=</h2><h2>141.31 g CuCl</h2><h2>2</h2><h2 /><h2>Now, you know that the diluted solution must contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride. As you know, when you dilute a solution, you increase the amount of solvent while keeping the amount of solute constant.</h2><h2 /><h2>This means that you must figure out what volume of the initial solution will contain </h2><h2>4.49 g</h2><h2> of copper(II) chloride, the solute.</h2><h2 /><h2>4.49</h2><h2>g</h2><h2>⋅</h2><h2>133 mL solution</h2><h2>141.32</h2><h2>g</h2><h2>=</h2><h2>4.23 mL solution</h2><h2>−−−−−−−−−−−−−− </h2><h2 /><h2>The answer is rounded to three sig figs.</h2><h2 /><h2>You can thus say that when you dilute </h2><h2>4.23 mL</h2><h2> of </h2><h2>7.90 M</h2><h2> copper(II) chloride solution to a total volume of </h2><h2>51.5 mL</h2><h2> , you will have a solution that contains </h2><h2>4.49 g</h2><h2> of copper(II) chloride.</h2>