Mass of CO₂ evolved : 0.108 g
<h3>Further explanation</h3>
Given
1.205g sample, 36% MgCO3 and 44% K2CO3
Required
mass of CO2
Solution
0.36 x 1.205 g=0.4338 g
mass C in MgCO₃(MW MgCO₃=84 g/mol, Ar C = 12/gmol)
= (12/84) x 0.4338
= 0.062 g
0.44 x 1.205 g = 0.5302 g
Mass C in K₂CO₃(MW=138 g/mol) :
= (12/138) x 0.5302
= 0.046 g
Total mass Of CO₂ :
= 0.062 + 0.046
= 0.108 g
Answer:
85 cents/L is equal to 3.2176$/gallon.
gas wiuld be heaper to buy from the station A.
Explanation:
As 85 cents/L is more than $2.5/gallon therefore buying gas from station A would be cheaper than the other one.
Complete Question:
A chemist adds 55.0 mL of a 1.1M barium acetate (Ba(C2H3O2)2) solution to a reaction flask. Calculate the mass in grams of barium acetate the chemist has added to the flask. Round your answer to 2 significant digits.
Answer:
15 g
Explanation:
The concentration of the barium acetate is given in mol/L (M), thus, the number of moles (n) of it is the concentrantion multiplied by the volume (55.0 mL = 0.055 L):
n = 1.1 * 0.055
n = 0.0605 mol
The molar mass of the substance can be calculated by the sum of the molar mass of each element, which can be found at the periodic table. Thus:
Ba = 137.33 g/mol
C = 12.00 g/mol
H = 1.00 g/mol
O = 16.00 g/mol
Ba(C2H3O2)2 = 137.33 + 4*12 + 6*1 + 4*16 = 255.33 g/mol
The molar mass is the mass divided by the number of moles, thus the mass (m) is the molar mass multiplied by the number of moles.
m = 255.33 * 0.0605
m = 15.45 g
Rounded by 2 significant digits, m = 15 g.
The answer is
C. Control reaction rate
hope it helps :)