Answer:
During MITOSIS, the parent, diploid (2n), cell is divided to create two identical, diploid (2n), daughter cells. ... After cytokinesis, the ploidy of the daughter cells remains the same because each daughter cell contains 4 chromatids, as the parent cell did.
Answer:
2HI + K2SO3=>2KI+H2SO3
Explanation:When aqueous hydroiodic acid and aqueous potassium sulfite are mixed the products obtained are potassium iodide and sulfurous acid.Both reactants are ionic compounds and they undergo double replacement reaction.In a double replacement reaction the parts of the ionic compounds are changed.The product is obtained by combinig cation of one compound with anion of other compound.so in above reaction sulfurous acid is obtained which is in gaseous form and potassium iodide is an ionic compound.
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.:
Answer:
The mass percentage of carbon can be found easily using the molar mass of C6H12O6, 180.1559 g/mol. We need to find the mass of the glucose produced, so we multiply the number of moles of glucose by its molar mass. C6H12O6 = CO2 + C3H6O3 + CH3OCH3 Take fructose for example. Compound.
Explanation: I looked it up