The statement that best describes the effect of low ionization energies and low electronegativities on metallic bonding is the first one - the valence electrons are easily delocalized.
Due to these low energies and negativities, valence electrons can be moved around quite easily and their positions may be altered quite drastically.
Answer:
1) C2H4(OH)2
Explanation:
A 1,2-ethanediol has an ethane structure consisting of two Carbon atoms with a hydrogen from each carbon substituted by a hydroxyl group. This makes it a 1,2-diol.
Inertia is the retaliation of an object to change in its velocity
Answer:
A. NaHCO₃
Explanation:
NaHCO₃ ⇒ NaOH + H₂CO₃
NaOH is a strong base and H₂CO₃ is a weak acid. Therefore, NaHCO₃ is a salt of a strong base-weak acid reaction. The salt is basic because carbonic acid (H₂CO₃) is a weak acid so it remains undissociated. So, there is a presence of additional OH⁻ ions that makes the solution basic.
Hope that helps.
Answer:
2,3–dimethylpentane
Explanation:
To know which option is correct, we shall determine the name of the compound.
To obtain the name of the compound, do the following:
1. Determine the longest continuous carbon chain. This gives the parent name of the compound.
2. Identify the substituent group attached to the compound.
3. Locate the position of the substituent group by giving it the lowest possible count.
4. Combine the above to obtain the name of the compound.
Now, we shall determine the name of the compound as follow:
1. The longest continuous carbon chain is 5. Thus, the parent name of the compound is pentane.
2. The substituent group attached is methyl (–CH₃)
3. There are two methyl group attached to the compound. One is located at carbon 2 and the other at carbon 3.
4. Therefore, the name of the compound is:
2,3–dimethylpentane
None of the options are correct.