Answer:
can exchange energy with its surroundings through heat and work transfer. In other words, work and heat are the forms that energy can be transferred across the system boundary.
The question doesn't give us enough information to answer.
The answer depends on the mass of the object, how long the force
acts on the object, the OTHER forces on the object, and whether the
object is free to move.
-- If you increase the force with which you push on a brick wall,
the amount of work done remains unchanged, namely Zero.
-- If you push on a pingpong ball with a force of 1 ounce for 1 second,
the ball accelerates substantially, it moves a substantial distance, and
so the work done is substantial.
-- But if you push on a battleship, even with a much bigger force ...
let's say 1 pound ... and keep pushing for a month ... the ship accelerates
microscopically, moves a microscopic distance, and the work done by
your force is microscopic.
I think the answer is "<span>The ball that went out of the park shows more work because the distance was greater."</span>
The Answer Is : D. 20.0 cm
My Reason : These types of problems can all be solved using the lens or mirror equation.
1/20 +1/q= 1/10
q=20 cm
The image is formed behind the lens at 2f or the center of curvature.
It is real, inverted, and the same size as the object