The gravitational force the sun experiences from the earth is 3.48×10²²N, which is exactly the same as the force the sun experiences from the earth.
- Gravity is a force that develops as a result of the attraction between mass-containing objects. The mass of the object has a direct relationship to the strength of this attraction. r equals the separation of two objects.
F = G (M₁M₂)/r²
Where, F the gravitational force
G=6.67×10⁻¹¹Nm²kg⁻² gravitational constant
M₁=5.98×10²⁴kg mass of earth
M₂= 1.99×10³⁰ kg the mass of the sun
r =15×10¹⁰ m is the distance between sun and earth
Putting all the values in above equation,
F = 6.67×10⁻¹¹Nm²kg⁻²(5.98×10²⁴kg 1.99×10³⁰ kg)/15×10¹⁰ m
On solving the above equation we get,
F = 3.48×10²²N
To know more about gravitational force
brainly.com/question/12830265
#SPJ4
Explanation:
Equilibrium position in y direction:
W = Fb (Weight of the block is equal to buoyant force)
m*g = V*p*g
V under water = A*h
hence,
m = A*h*p
Using Newton 2nd Law

Hence, T time period
T = 2*pi*sqrt ( h / g )
Answer:
final temperature will be 0 degree C
Total amount of ice will be

total amount of water

Explanation:
After thermal equilibrium is achieved we can say that
Heat given by water = heat absorbed by ice cubes
so we will have
Heat given by water to reach 0 degree C



heat absorbed by ice cubes to reach 0 degree



so we will have

so here we can say that few amount of water will freeze here to balance the heat



so final temperature will be 0 degree C
Total amount of ice will be


total amount of water


Answer:
Explanation:
A pressure that causes the Hg column to rise 1 millimeter is called a torr. The term 1 mmHg used can replaced by the torr.
1 atm = 760 torr = 14.7 psi.
A.
120 mmHg
Psi:
760 mmHg = 14.7 psi
120 mmHg = 14.7/760 * 120
= 2.32 psi
Pa:
1mmHg = 133.322 Pa
120 mmHg = 120 * 133.322
= 15998.4 Pa
B.
80 mmHg
Psi:
760 mmHg = 14.7 psi
80 mmHg = 14.7/760 * 80
= 1.55 psi
Pa:
1mmHg = 133.322 Pa
80 mmHg = 80 * 133.322
= 10665.6 Pa
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true