To calculate we use the formula for a magnetic force in a current-carrying wire expressed as the product of the current, magnetic field and the length of the wire.
F = I x L x B
where F is the force on the wire, I is the current flowing on the wire, L is the length of the wire and B is the magnetic field.
F = 10.0 A x 1.2 m x 0.050 T
F = 0.60 N
Answer:
none
Explanation:
it's to high up to be affected by the gravity
<h2>a) Average velocity in first 4 seconds is 64 ft/s upward</h2><h2>b) Average velocity in second 4 seconds is 63.5 ft/s downward</h2>
Explanation:
a) Given S(t) = 76 + 128t − 16t²
s(0) = 76 + 128 x 0 − 16 x 0² = 76 ft
s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft
Displacement in 4 seconds = 332 - 76 = 256 ft
Time = 4 - 0 = 4 s

Average velocity in first 4 seconds is 64 ft/s upward
a) Given S(t) = 76 + 128t − 16t²
s(4) = 76 + 128 x 4 − 16 x 4² = 332 ft
s(8) = 76 + 128 x 8 − 16 x 8² = 78 ft
Displacement in 4 seconds = 78 - 332 = -254 ft
Time = 4 - 0 = 4 s

Average velocity in second 4 seconds is 63.5 ft/s downward
Answer:
C
technically B too but youre teachers not that smart so there you go
LiCl, because lithium (Li) has one positively charged ion (1+), and
chloride (Cl) has one negatively charged ion (1-), so they
cancel each other out.