Answer:
35.6 liters at STP
Explanation:
The molar mass of carbon dioxide is about 44.01 g/mol. The volume of a mole of ideal gas at STP is 22.4 L, so the volume of 70.0 g will be ...
(70.0g)/(44.01 g/mol)·(22.4 L/mol) ≈ 35.6 L
Answer:I would copy and past but that’s a lot of work just read it
Explanation:
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed

Answer:
The balanced single displacement reaction between aluminum and copper sulphate is as follows.

Explanation:
The given ions are as follows.
- Aluminium ion and copper sulfate ion.
Single displacement reaction occurs one element replaces another element.
Hence, the balanced chemical reaction is as follows.

<u>Oxidation half reaction:</u>

Aluminium loses three electrons.
<u>Reduction half reaction:</u>
<u>
</u>
Copper gain three electrons.