Answer:
Mass of sample in mg = 15,285 mg
Explanation:
Given:
Volume of urine sample = 15 ml
Density of sample = 1.019 g/ml
FInd:
Mass of sample in mg
Computation:
Mass = density x volume
Mass of sample in mg = Volume of urine sample x Density of sample
Mass of sample in mg = 1.019 x 15
Mass of sample in mg = 15.285 gram
Mass of sample in mg = 15.285 x 1,000
Mass of sample in mg = 15,285 mg
The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
Answer:
The answer to this would be communicating.
Explanation:
A scientist would be communicating to his or her fellow colleagues and sharing to them his or her idea.
Hope you find this answer helpful! :)
How are you going to experiment means how will you show your project in a real life situation like a penny being cleaned with different acids.