Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.
Answer: 1.414x10^24 molecules in 94.4g MgO
Explanation: molar mass MgO 40.204
molecules in 40.204 g MgO = avogadro number
molecules in 94.4 g MgO = (94.4/40.204)*avogadro number
(94.4/40.204)*6.02214076*10^23 = 14.14x10^23
The first step in the scientific methods is ask a question
your answer is A if i am wrong let me know
<span>The answer is hypertonic. In osmosis, water
molecules move from a hypotonic solution to the hypertonic solution, through a
semipermeable membrane. This occurs until
both solutions become isotonic relative to each other. In osmosis, only
the movement of water molecules occurs since the ions are large enough to pass
through the pores of the semipermeable membrane,
in this case, the cell membrane. Due to
loss of water in the process of osmosis, the cells in the fingers of the swimmers
shrunk hence looked shriveled.</span>