1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
3 years ago
9

Which one of the following statements is true?

Physics
1 answer:
Vlad1618 [11]3 years ago
3 0
B. Because chemical changes (for example, burning turning something into ashes) can change it's appearance while physical changes (for example, crumpling a piece of paper) can aswell.
You might be interested in
Which one of the following statements concerning kinetic energy is true? a The kinetic energy of an object always has a positive
hodyreva [135]

a The kinetic energy of an object always has a positive value.

Explanation:

The kinetic energy of an object is the energy possessed by an object due to its motion, and it can be calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

Let's now analyze each statement:

a The kinetic energy of an object always has a positive value. --> TRUE. In fact, the mass of the object is always positive, and the term v^2 is always positive as well, so the kinetic energy is always positive.

b The kinetic energy of an object is directly proportional to its speed. --> FALSE. Looking at the formula, we see that the kinetic energy is proportional to the square of the speed, K\propto v^2.

c The kinetic energy of an object is expressed in watts. --> FALSE. Watts is the units for measuring power, while the kinetic energy is measured in Joules, the units for the energy.

d The kinetic energy of an object is a quantitative measure of its inertia. --> FALSE. The inertia of an object depends only on its mass, not on its speed.

e The kinetic energy of an object is always equal to the object’s potential energy. --> FALSE. The potential energy depends on the altitude from the ground, not from the speed, so the two energies can be different.

Learn more about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

8 0
2 years ago
According to einstein's theory of simple relativity (_E + mc(2)_). BLANK is converted into BLANK.
True [87]

Answer:

energy is converted into mass

Explanation:

8 0
2 years ago
E14. A ball rolls off a table with a horizontal velocity of 5 m/s. If
Shkiper50 [21]

a) Vertical velocity: 5.9 m/s

b) Horizontal velocity: 5 m/s

Explanation:

a)

The motion of the ball is the motion of a projectile, which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction)

- A uniformly accelerated motion (constant acceleration) along the vertical direction

Here we want to find the vertical component of the ball's velocity. This can be done by using the suvat equation for the vertical motion:

v_y = u_y +gt

where:

v_y is the vertical velocity at time t

u_y=0 is the initial vertical velocity (zero because the ball has been thrown horizontally)

g=10 m/s^2 is the acceleration of gravity (here we take downward as positive direction)

Substituting t = 0.6 s, which is the total time of flight, we find the vertical velocity of the ball just before it hits the ground:

v_y=0+(9.8)(0.6)=5.9 m/s

b)

The motion along the vertical direction is an accelerated motion, because there is a force (the force of gravity) acting on the ball and that it causes an acceleration in the ball.

However, there are no forces acting in the horizontal direction on the ball (if we neglect the air resistance): this means that the acceleration of the ball in the horizontal direction is zero.

As a consequence, this also means that the horizontal component of the ball's velocity is constant during the motion.

Since the ball was thrown from the table with an initial horizontal velocity of 5 m/s, this means that the horizontal velocity of the ball just before it hits the floor is still

v_x =  5 m/s

8 0
3 years ago
If a farsighted person has a near point that is 0.600 mm from the eye, what is the focal length f2f2f_2 of the contact lenses th
Readme [11.4K]

Answer:

0.22mm

Explanation:

A far sighted person is a person suffering from long sightedness i.e such individual can only see far distant object clearly but not near distant object. The defect is corrected using convex lens.

Since convex lens is used, the focal (f) length of the lens is positive and the image distance (v) is also positive.

Using the lens formula,

1/f = 1/u + 1/v

Where u is the object distance = 0.35mm

v = 0.6mm

1/f = 1/0.35+1/0.6

1/f = 2.86 + 1.67

1/f = 4.53

f = 1/4.53

f = 0.22mm

The focal length of the contact lenses will be 0.22mm

5 0
3 years ago
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
Other questions:
  • In a 100 mm diameter horizontal pipe, a venturimeter of 0.5 contraction ratio has been fitted. The head of water on the meter wh
    12·1 answer
  • A particle is acted on by two torques about the origin: τ→1 has a magnitude of 8 N·m and is directed in the positive direction o
    12·1 answer
  • Which is the best example of the law of conservation of energy?
    9·1 answer
  • Which of these is a chemical change?
    10·2 answers
  • A force of 8 N accelerates by 4 m/s^2. What would be the amount of force needed to give a final acceleration of 5.3 m/s^2
    15·1 answer
  • What is the momentum of a 31.2 kg object traveling at a velocity of 2.1 m/s?
    14·1 answer
  • Draw the well labelled diagram of thermo flask.​
    10·1 answer
  • A box with a mass of 2 kg only has four forces acting on it: One force of 16 N due East. One force of 24 N due South. One force
    6·2 answers
  • Method to separate the . <br>sand+iron fillings​
    5·2 answers
  • A crowbar 27 in. long is pivoted 8 in. from the end. What force must be applied at the long end in order to lift a 600 lb object
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!