The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
The speed of an object can be determined from the distance vs time graph.
You know that speed = distance/time
in the graph, distance/time = slope of the curve.
So SPEED IS GIVEN BY THE SLOPE of the curve in the graph.
● If the distance vs time curve is a straight line, parallel to time axis(x-axis), slope is 0. That means speed is 0. So the object is at rest.
● If the distance vs time curve is a straight line, with some non-zero slope; That means speed is nonzero and constant. So the object is in uniform motion.
● If the distance vs time curve is a curved, the slope is changing. That means speed is changing. So the object is in an accelerated motion.
Answer:
recall that heat absorbed released is given by
Q = mc*(T2 - T1)
where
m = mass (in g)
c = specific heat capacity (in J/g-k)
T = temperature (in C or K)
*note: Q is (+) when heat is absorbed and (-) when heat is released.
substituting,
Q = (480)*(0.97)*(234 - 22)
Q = 98707 J = 98.7 kJ
Explanation:
That's wave 'diffraction'.
Answer:
Shorter path
Explanation:
For all turning vehicles, the rear wheels follow <u>Shorter path</u> than the front wheels.
Any turning vehicle, the rear(the back part of something, especially a vehicle.) wheels follow a shorter path than the front wheels. The longer the vehicle is, the greater the difference will be in path. Trucks initially swing out before making a turn